Crowd Simulators: Computational Methods, Product Selection, and Visualization

  • Chapter
  • First Online:
Introduction to Crowd Management

Abstract

Crowd simulation is becoming the dominant way to design infrastructures where large numbers of people transit or move and to plan mass events. Simulation software range from commercial products provided with extensive documentation to open-source codes available for research and development. The commercialization of crowd simulators has allowed to produce user-friendly software requiring little expertise to be used and generating visually realistic results. However, to correctly set up a simulation scenario involving crowd, it is important to have a basic understanding on how these simulators work and what are their limitations. In addition, the large variety of models and products available to simulate crowds could become a challenge when a selection is required. In this chapter, we explain working principles of crowd simulators while also proposing a methodology to select the best product/solution fitting one’s requirements. Also, we discuss the important topic of validation, proposing methods to judge on the accuracy of a particular simulation. Finally, methods to visualize the results will be discussed and compared to allow users picking up the right method depending on the simulated scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Build. Environ. 44(3), 437–445 (2009). https://doi.org/10.1016/j.buildenv.2008.04.002

    Article  Google Scholar 

  2. Templeton, A., Drury, J., Philippides, A.: From mindless masses to small groups: conceptualizing collective behavior in crowd modeling. Rev. Gener. Psychol. 19(3), 215–229 (2015). https://doi.org/10.1037/gpr0000032

    Article  Google Scholar 

  3. Lovreglio, R., Ronchi, E., Kinsey, M.J.: An online survey of pedestrian evacuation model usage and users. Fire Technol. 1–21 (2019). https://doi.org/10.1007/s10694-019-00923-8

  4. **a, Y., Wong, S., Shu, C.W.: Dynamic continuum pedestrian flow model with memory effect. Phys. Rev. E 79(6),(2009). https://doi.org/10.1103/PhysRevE.79.066113

  5. Guo, R.Y.: Potential-based dynamic pedestrian flow assignment. Transp. Res. Part C Emerg. Technol. 91, 263–275 (2018). https://doi.org/10.1016/j.trc.2018.04.011

    Article  Google Scholar 

  6. Lohner, R., Baqui, M., Haug, E., Muhamad, B.: Real-time micro-modelling of a million pedestrians. Eng. Comput. (2016). https://doi.org/10.1108/EC-02-2015-0036

    Article  Google Scholar 

  7. Makinoshima, F., Imamura, F., Abe, Y.: Enhancing a tsunami evacuation simulation for a multi-scenario analysis using parallel computing. Simul. Modell. Pract. Theor. 83, 36–50 (2018). https://doi.org/10.1016/j.simpat.2017.12.016

    Article  Google Scholar 

  8. Lohner, R., Muhamad, B., Dambalmath, P., Haug, E.: Fundamental diagrams for specific very high density crowds. Collect. Dyn. 2, 1–15 (2018). https://doi.org/10.17815/CD.2017.13

  9. Lopez-Carmona, M.A., Garcia, A.P.: Cellevac: an adaptive guidance system for crowd evacuation through behavioral optimization. Saf. Sci. 139 (2021). https://doi.org/10.1016/j.ssci.2021.105215

  10. Hoogendoorn, S.P., Bovy, P.H.: Pedestrian route-choice and activity scheduling theory and models. Transp. Res. Part B Methodol. 38(2), 169–190 (2004). https://doi.org/10.1016/S0191-2615(03)00007-9

    Article  Google Scholar 

  11. Papadimitriou, E., Yannis, G., Golias, J.: A critical assessment of pedestrian behaviour models. Transp. Res. Part F Traff. Psychol. Behav. 12(3), 242–255 (2009). https://doi.org/10.1016/j.trf.2008.12.004

    Article  Google Scholar 

  12. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications, pp. 517–550. Springer New York (2011). https://doi.org/10.1007/978-1-4419-7695-6_29

  13. Hensher, D.A., Rose, J.M., Rose, J.M., Greene, W.H.: Applied Choice Analysis: A Primer. Cambridge University Press (2005)

    Google Scholar 

  14. Wooldridge, J.M.: Introductory econometrics: a modern approach. Cengage Learning (2015)

    Google Scholar 

  15. de Dios Ortúzar, J., Willumsen, L.G.: Modelling transport. John wiley & sons (2011)

    Google Scholar 

  16. Ben-Akiva, M., Lerman, S.R.: Discrete choice analysis: theory and application to travel demand. Transportation Studies (2018)

    Google Scholar 

  17. Beale, L., Field, K., Briggs, D., Picton, P., Matthews, H.: Map** for wheelchair users: route navigation in urban spaces. Cartograph. J. 43(1), 68–81 (2006). https://doi.org/10.1179/000870406X93517

    Article  Google Scholar 

  18. Church, R.L., Marston, J.R.: Measuring accessibility for people with a disability. Geograph. Anal. 35(1), 83–96 (2003). https://doi.org/10.1111/j.1538-4632.2003.tb01102.x

    Article  Google Scholar 

  19. Ding, D., Parmanto, B., Karimi, H.A., Roongpiboonsopit, D., Pramana, G., Conahan, T., Kasemsuppakorn, P.: Design considerations for a personalized wheelchair navigation system. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4790–4793. IEEE (2007). https://doi.org/10.1109/IEMBS.2007.4353411

  20. Dzafic, D., Link, J.A.B., Baumeister, D., Kowalewski, S., Wehrle, K.: Requirements for dynamic route planning for wheelchair users. In: International Conference on Indoor Positioning and Indoor Navigation, vol. 27, pp. 1–4 (2014)

    Google Scholar 

  21. Kasemsuppakorn, P., Karimi, H.A., Ding, D., Ojeda, M.A.: Understanding route choices for wheelchair navigation. Disabil. Rehabil. Assistive Technol. 10(3), 198–210 (2015). https://doi.org/10.1007/978-3-540-70540-6_164

    Article  Google Scholar 

  22. Neis, P.: Measuring the reliability of wheelchair user route planning based on volunteered geographic information. Trans. GIS 19(2), 188–201 (2015). https://doi.org/10.1111/tgis.12087

    Article  Google Scholar 

  23. Crociani, L., Vizzari, G., Yanagisawa, D., Nishinari, K., Bandini, S.: Route choice in pedestrian simulation: design and evaluation of a model based on empirical observations. Intelligenza Artificiale 10(2), 163–182 (2016). https://doi.org/10.3233/IA-160102

    Article  Google Scholar 

  24. Li, M., Shu, P., **ao, Y., Wang, P.: Modeling detour decision combined the tactical and operational layer based on perceived density. Phys. A Stat. Mech. Appl. 574 (2021). https://doi.org/10.1016/j.physa.2021.126021

  25. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B Methodol. 35(3), 293–312 (2001). https://doi.org/10.1016/S0191-2615(99)00052-1

    Article  Google Scholar 

  26. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. Appl. 295(3–4), 507–525 (2001). https://doi.org/10.1016/S0378-4371(01)00141-8

    Article  MATH  Google Scholar 

  27. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field ca model for evacuation dynamics. IEICE Trans. Inf. Syst. 87(3), 726–732 (2004)

    Google Scholar 

  28. Li, S., Li, X., Qu, Y., Jia, B.: Block-based floor field model for pedestrian’s walking through corner. Phys. A Stat. Mech. Appl. 432, 337–353 (2015). https://doi.org/10.1016/j.physa.2015.03.041

    Article  Google Scholar 

  29. Suma, Y., Yanagisawa, D., Nishinari, K.: Anticipation effect in pedestrian dynamics: modeling and experiments. Phys. A Stat. Mech. Appl. 391(1–2), 248–263 (2012). https://doi.org/10.1016/j.physa.2011.07.022

    Article  Google Scholar 

  30. Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E 67(5) (2003). https://doi.org/10.1103/PhysRevE.67.056122

  31. Henein, C.M., White, T.: Macroscopic effects of microscopic forces between agents in crowd models. Phys. A Stat. Mech. Appl. 373, 694–712 (2007). https://doi.org/10.1016/j.physa.2006.06.023

    Article  Google Scholar 

  32. Weng, W., Chen, T., Yuan, H., Fan, W.: Cellular automaton simulation of pedestrian counter flow with different walk velocities. Phys. Rev. E 74(3) (2006). https://doi.org/10.1103/PhysRevE.74.036102

  33. Vizzari, G., Manenti, L., Crociani, L.: Adaptive pedestrian behaviour for the preservation of group cohesion. Complex Adap. Syst. Model. 1(1), 7 (2013). https://doi.org/10.1186/2194-3206-1-7

    Article  Google Scholar 

  34. Feliciani, C., Murakami, H., Shimura, K., Nishinari, K.: Efficiently informing crowds-experiments and simulations on route choice and decision making in pedestrian crowds with wheelchair users. Transp. Res. Part C Emerg. Technol. 114, 484–503 (2020). https://doi.org/10.1016/j.trc.2020.02.019

    Article  Google Scholar 

  35. Nowak, S., Schadschneider, A.: Quantitative analysis of pedestrian counterflow in a cellular automaton model. Phys. Rev. E 85(6) (2012). https://doi.org/10.1103/PhysRevE.85.066128

  36. Feliciani, C., Nishinari, K.: An improved cellular automata model to simulate the behavior of high density crowd and validation by experimental data. Phys. A Stat. Mech. Appl. 451, 135–148 (2016). https://doi.org/10.1016/j.physa.2016.01.057

    Article  Google Scholar 

  37. Zeng, W., Chen, P., Yu, G., Wang, Y.: Specification and calibration of a microscopic model for pedestrian dynamic simulation at signalized intersections: a hybrid approach. Transp. Res. Part C Emerg. Technol. 80, 37–70 (2017). https://doi.org/10.1016/j.trc.2017.04.009

    Article  Google Scholar 

  38. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995). https://doi.org/10.1103/PhysRevE.51.4282

    Article  Google Scholar 

  39. Zanlungo, F., Ikeda, T., Kanda, T.: Social force model with explicit collision prediction. EPL (Europhys. Lett.) 93(6), 68005 (2011) https://doi.org/10.1209/0295-5075/93/68005

  40. Friis, C., Svensson, L.: Pedestrian microsimulation. a comparative study between the software programs vissim and viswalk. Master’s thesis, Chalmers University of Technology (2013)

    Google Scholar 

  41. Heydemans, E., Sumabrata, R.J.: The analysis of pedestrian’s facility level of service at pondok cina rail station’s platform using ptv viswalk. In: MATEC Web of Conferences, vol. 278, p. 05001. EDP Sciences (2019). https://doi.org/10.1051/matecconf/201927805001

  42. Pan, X., Han, C.S., Dauber, K., Law, K.H.: A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations. Ai & Soc. 22(2), 113–132 (2007). https://doi.org/10.1007/s00146-007-0126-1

    Article  Google Scholar 

  43. Shi, X., Xue, S., Feliciani, C., Shiwakoti, N., Lin, J., Li, D., Ye, Z.: Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions. Phys. A Stat. Mech. Appl. 562 (2021). https://doi.org/10.1016/j.physa.2020

  44. Ezaki, T., Nishinari, K.: Potential global jamming transition in aviation networks. Phys. Rev. E 90(2) (2014). https://doi.org/10.1103/PhysRevE.90.022807

  45. Ramezani, M., Haddad, J., Geroliminis, N.: Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control. Transp. Res. Part B Methodol. 74, 1–19 (2015). https://doi.org/10.1016/j.trb.2014.12.010

    Article  Google Scholar 

  46. Karamouzas, I., Skinner, B., Guy, S.J.: Universal power law governing pedestrian interactions. Phys. Rev. Lett. 113(23) (2014). https://doi.org/10.1103/PhysRevLett.113.238701

  47. Guo, R.Y., Wong, S., Huang, H.J., Zhang, P., Lam, W.H.: A microscopic pedestrian-simulation model and its application to intersecting flows. Physica A Stat. Mech. Appl. 389(3), 515–526 (2010). https://doi.org/10.1016/j.physa.2009.10.008

    Article  Google Scholar 

  48. Robin, T., Antonini, G., Bierlaire, M., Cruz, J.: Specification, estimation and validation of a pedestrian walking behavior model. Transp. Res. Part B Methodol. 43(1), 36–56 (2009). https://doi.org/10.1016/j.trb.2008.06.010

    Article  Google Scholar 

  49. Helbing, D.: A fluid dynamic model for the movement of pedestrians. ar**v preprint cond-mat/9805213 (1998). https://arxiv.org/abs/cond-mat/9805213

  50. Hoogendoorn, S., Bovy, P.H.: Gas-kinetic modeling and simulation of pedestrian flows. Transp. Res. Record 1710(1), 28–36 (2000). https://doi.org/10.3141/1710-04

    Article  Google Scholar 

  51. Twarogowska, M., Goatin, P., Duvigneau, R.: Macroscopic modeling and simulations of room evacuation. Appl. Math. Modell. 38(24), 5781–5795 (2014). https://doi.org/10.1016/j.apm.2014.03.027

    Article  MathSciNet  MATH  Google Scholar 

  52. Kouskoulis, G., Spyropoulou, I., Antoniou, C.: Pedestrian simulation: Theoretical models vs. data driven techniques. Int. J. Transp. Sci. Technol. 7(4), 241–253 (2018). https://doi.org/10.1016/j.ijtst.2018.09.001

  53. Duives, D.C., Wang, G., Kim, J.: Forecasting pedestrian movements using recurrent neural networks: An application of crowd monitoring data. Sensors 19(2), 382 (2019). https://doi.org/10.3390/s19020382

    Article  Google Scholar 

  54. Korhonen, T., Hostikka, S.: Fire dynamics simulator with evacuation: Fds+ evac: Technical reference and user’s guide. Tech. Rep, VTT Technical Research Centre of Finland (2009)

    Google Scholar 

  55. Horni, A., Nagel, K., Axhausen, K.W.: The multi-agent transport simulation MATSim. Ubiquity Press (2016)

    Google Scholar 

  56. Chraibi, M., Zhang, J.: Jupedsim: an open framework for simulating and analyzing the dynamics of pedestrians. In: SUMO Conference 2016, FZJ-2016-02717. Jülich Supercomputing Center (2016)

    Google Scholar 

  57. Zönnchen, B., Kleinmeier, B., Köster, G.: Vadere—a simulation framework to compare locomotion models. In: Traffic and Granular Flow 2019, pp. 331–337. Springer (2020). https://doi.org/10.1007/978-3-030-55973-1_41

  58. Feliciani, C., Murakami, H., Nishinari, K.: A universal function for capacity of bidirectional pedestrian streams: filling the gaps in the literature. PloS one 13(12) (2018). https://doi.org/10.1371/journal.pone.0208496

  59. Boltes, M., Holl, S., Seyfried, A.: Data archive for exploring pedestrian dynamics and its application in dimensioning of facilities for multidirectional streams. Collect. Dyn. 5, 17–24 (2020) https://doi.org/10.17815/CD.2020.28

  60. Murakami, H., Feliciani, C., Nishiyama, Y., Nishinari, K.: Mutual anticipation can contribute to self-organization in human crowds. Sci. Adv. 7(12), eabe7758 (2021). https://doi.org/10.1126/sciadv.abe7758

  61. Duives, D.C., Daamen, W., Hoogendoorn, S.P.: State-of-the-art crowd motion simulation models. Transp. Res. Part C Emerg. Technol. 37, 193–209 (2013). https://doi.org/10.1016/j.trc.2013.02.005

    Article  Google Scholar 

  62. Kinsey, M., Gwynne, S., Kinateder, M.: Evacuation modelling biases—research, development, and application. In: Fire and Evacuation Modeling Technical Conference (FEMTC), pp. 1–11 (2020)

    Google Scholar 

  63. Boltes, M., Seyfried, A., Steffen, B., Schadschneider, A.: Automatic extraction of pedestrian trajectories from video recordings. In: Pedestrian and Evacuation Dynamics 2008, pp. 43–54. Springer (2010). https://doi.org/10.1007/978-3-642-04504-2_3

  64. Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127–133 (2013). https://doi.org/10.1016/j.neucom.2012.01.036

    Article  Google Scholar 

  65. Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: an empirical study. Phys. Rev. E 75(4) (2007). https://doi.org/10.1103/PhysRevE.75.046109

  66. Feliciani, C., Nishinari, K.: Measurement of congestion and intrinsic risk in pedestrian crowds. Transp. Res. Part C Emerg. Technol. 91, 124–155 (2018). https://doi.org/10.1016/j.trc.2018.03.027

    Article  Google Scholar 

  67. Feliciani, C., Zuriguel, I., Garcimartín, A., Maza, D., Nishinari, K.: Systematic experimental investigation of the obstacle effect during non-competitive and extremely competitive evacuations. Sci. Rep. 10(1), 1–20 (2020). https://doi.org/10.1038/s41598-020-72733-w

    Article  Google Scholar 

  68. Hosseini, O., Maghrebi, M., Maghrebi, M.F.: Determining optimum staged-evacuation schedule considering total evacuation time, congestion severity and fire threats. Saf. Sci. 139 (2021). https://doi.org/10.1016/j.ssci.2021.105211

  69. Zanlungo, F., Feliciani, C., Yucel, Z., Nishinari, K., Kanda, T.: A pure number to assess congestion in pedestrian crowds

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Feliciani .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feliciani, C., Shimura, K., Nishinari, K. (2021). Crowd Simulators: Computational Methods, Product Selection, and Visualization. In: Introduction to Crowd Management. Springer, Cham. https://doi.org/10.1007/978-3-030-90012-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90012-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90011-3

  • Online ISBN: 978-3-030-90012-0

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics

Navigation