Part of the book series: Springer Theses ((Springer Theses))

  • 273 Accesses

Abstract

The discussion about non-centralized MPC schemes for economic dispatch is started by presenting two distributed optimization algorithms that solve Problem (2.15). The proposed methods are based on the augmented Lagrangian approach. First, in Sect. 3.1, a brief introduction about the augmented Lagrangian approach is presented. Then, in Sect. 3.2, a distributed algorithm based on this approach is designed and its convergence properties are stated. Section 3.3 discusses another distributed algorithm based on the ADMM, which also belongs to the class of the augmented Lagrangian methods. Similarly, the design and convergence analysis of the second algorithm is provided. Finally, some comparisons of the proposed algorithms and conclusions are drawn in Sect. 3.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertsekas DP (2008) Extended monotropic programming and duality. J Optim Theory Appl 139(2):209–225

    Article  MathSciNet  Google Scholar 

  2. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  Google Scholar 

  3. Boyd S, Vandenberghe L (2010) Convex optimization, vol 25. Cambridge University Press, Cambridge

    Google Scholar 

  4. Bertsekas DP (1995) Nonlinear programming. Athena Scientific

    Google Scholar 

  5. Larsen GKH, van Foreest ND, Scherpen JMA (2014) Distributed MPC applied to a network of households with micro-CHP and heat storage. IEEE Trans Smart Grid 5(4):2106–2114

    Article  Google Scholar 

  6. Kraning M, Chu E, Lavaei J, Boyd S (2014) Dynamic network energy management via proximal message passing. Found Trends in Optim 1(2):73–126

    Article  Google Scholar 

  7. Wang T, O’Neill D, Kamath H (2015) Dynamic control and optimization of distributed energy resources in a microgrid. IEEE Trans Smart Grid 6(6):2884–2894

    Article  Google Scholar 

  8. Hans CA, Braun P, Raisch, J, Grune L, Reincke-Collon C (2019) Hierarchical distributed model predictive control of interconnected microgrids. IEEE Trans Sustain Energy 10(1):407–416

    Google Scholar 

  9. Nedić A, Ozdaglar A (2009) Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom Control 54(1):48–61

    Article  MathSciNet  Google Scholar 

  10. Nedić A, Ozdaglar A, Parrilo PA (2010) Constrained consensus and optimization in multi-agent networks. IEEE Trans Autom Control 55(4):922–938

    Article  MathSciNet  Google Scholar 

  11. Chang T (2016) A proximal dual consensus ADMM method for multi-agent constrained optimization. IEEE Trans Signal Process 64(14):3719–3734

    Article  MathSciNet  Google Scholar 

  12. Chatzipanagiotis N, Dentcheva D, Zavlanos MM (2015) An augmented Lagrangian method for distributed optimization. Math Program 152(1):405–434

    Article  MathSciNet  Google Scholar 

  13. Chatzipanagiotis N, Zavlanos MM (2016) A distributed algorithm for convex constrained optimization under noise. IEEE Trans Autom Control 61(9):2496–2511

    Article  MathSciNet  Google Scholar 

  14. Lee S, Chatzipanagiotis N, Zavlanos MM (2018) Complexity certification of a distributed augmented Lagrangian method. IEEE Trans Autom Control 63(3):827–834

    Article  MathSciNet  Google Scholar 

  15. Mulvey JM, Ruszczyński A (1992) A diagonal quadratic approximation method for large scale linear programs. Oper Res Lett 12(4):205–215

    Article  MathSciNet  Google Scholar 

  16. Berger A, Mulvey J, Ruszczyński A (1994) An extension of the DQA algorithm to convex stochastic programs. SIAM J Optim 4(4):735–753

    Article  MathSciNet  Google Scholar 

  17. Ruszczyński A (1995) On convergence of an augmented Lagrangian decomposition method for sparse convex optimization. Math Oper Res 20(3):634–656

    Article  MathSciNet  Google Scholar 

  18. Bertsekas DP, Tsitsiklis JN (1997) Parallel and distributed computation: numerical methods. Athena Scientific

    Google Scholar 

  19. Wei E, Ozdaglar A (2013) On the O(1/k) convergence of asynchronous distributed alternating direction method of multipliers, pp 1–30. ar**v:1307.8254

  20. Chang T, Hong M, Liao W, Wang X (2016) Asynchronous distributed ADMM for large-scale optimization—part I: Algorithm and convergence analysis. IEEE Trans Signal Process 64(12):3118–3130

    Article  MathSciNet  Google Scholar 

  21. Beck A (2017) First-order methods in optimization. Society for Industrial and Applied Mathematics

    Google Scholar 

  22. Nedić A (2008) Lecture notes optimization I. Hamilton Institute

    Google Scholar 

  23. Uribe CA, Lee S, Gasnikov A, Nedić A (2018) A dual approach for optimal algorithms in distributed optimization over networks, pp 1–37. ar**v:1809.00710

  24. Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming, vol 13. SIAM

    Google Scholar 

  25. Nesterov Y (2013) Introductory lectures on convex optimization: a basic course, vol 87. Springer Science & Business Media, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wicak Ananduta .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ananduta, W.W. (2022). Distributed Augmented Lagrangian Methods. In: Non-centralized Optimization-Based Control Schemes for Large-Scale Energy Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-89803-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89803-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89802-1

  • Online ISBN: 978-3-030-89803-8

  • eBook Packages: Intelligent Technologies and Robotics

Publish with us

Policies and ethics

Navigation