Physicochemical Characterization of Nanocellulose: Composite, Crystallinity, Morphology

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Cellulose is one of the most important organic polymers in terms of its production and industrial applications. Cellulose found in nature is obtained from a big assortment of natural sources such as plant fibers, tunicates, and also obtained from bacteria. It makes it the most abundant organic polymer on the earth. Nanocellulose is a material derived from cellulose. For successful applications of nanocellulose, specific knowledge of properties by characterization is fundamental. Different morphologies of nanocellulose combined with biodegradable polymers extend the applications by increasing their mechanical properties. Some applications are biofilters, biosensor strips, tissue engineering, aerospace industry, automotive components, electrical industry, lubricants, heavy metal removal from aquatic media, lithium-ion batteries, and so forth. The crystallinity properties of nanocellulose studied by X-ray diffraction are fundamental to conjugate them with composites. These studies accompanied by other spectroscopic techniques such as nuclear magnetic resonance, Raman, and Infra-Red give precisely additional structural characteristics. Morphology characterization by atomic force, scanning, and transmission electron microscopy becomes important since nanocellulose originates from bottom-up or top-down methodologies. The morphology and dimensions vary according to parameters used in the direct synthesis from cellulose. The morphologies may be nanowhiskers, nanofibers, or bacterial nanocellulose, which are different from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 242.64
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jonoobi, M., Oladi, R., Davoudpour, Y. et al.: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22, 935–969 (2015). https://doi.org/10.1007/s10570-015-0551-0

  2. Smith, A.M., Moxon, S., Morris, G.A.: Biopolymers as wound healing materials. In Wound healing biomaterials. 261–287 (2016). https://doi.org/10.1016/B978-1-78242-456-7.00013-1

  3. Ioelovich, M.: Characterization of various kinds of nanocellulose. Handb. Nanocellulose Cellul. Nanocomposites, 51–100 (2017). https://doi.org/10.1002/9783527689972.ch2

  4. Kádár, R., Spirk, S., Nypelö, T.: Cellulose nanocrystal liquid crystal phases: progress and challenges in characterization using rheology coupled to optics, scattering, and spectroscopy. ACS Nano. 15, 7931–7945 (2021). https://doi.org/10.1021/acsnano.0c09829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chakrabarty, A., Teramoto, Y.: Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them. Polymers (Basel). 10, 517 (2018). https://doi.org/10.3390/polym10050517

    Article  CAS  PubMed Central  Google Scholar 

  6. Wang, K., Lu, J., Tusiime, R., et al.: Properties of poly (l-lactic acid) reinforced by l-lactic acid grafted nanocellulose crystal. Int. J. Biol. Macromol. 156, 314–320 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.025

    Article  CAS  PubMed  Google Scholar 

  7. Zinge, C., Kandasubramanian, B.: Nanocellulose based biodegradable polymers. Eur. Polym. J. 133, 109758 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109758

    Article  CAS  Google Scholar 

  8. Kargarzadeh, H., Huang, J., Lin, N., et al.: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci. 87, 197–227 (2018). https://doi.org/10.1016/j.progpolymsci.2018.07.008

    Article  CAS  Google Scholar 

  9. Kian, L.K., Saba, N., Jawaid, M., Sultan, M.T.H.: A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. Int. J. Biol. Macromol. 121, 1314–1328 (2019). https://doi.org/10.1016/j.ijbiomac.2018.09.040

    Article  CAS  PubMed  Google Scholar 

  10. Woodruff, M.A., Hutmacher, D.W.: The return of a forgotten polymer – {Polycaprolactone} in the 21st century. Prog. Polym. Sci. 35, 1217–1256 (2010). https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  CAS  Google Scholar 

  11. Mohamed, R.M., Yusoh, K.: A review on the recent research of polycaprolactone (PCL). Adv. Mater. Res. 1134, 249–255 (2015). https://doi.org/10.4028/www.scientific.net/amr.1134.249

    Article  Google Scholar 

  12. Lönnberg, H., Larsson, K., Lindström, T., et al.: Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl. Mater. Interfaces. 3, 1426–1433 (2011). https://doi.org/10.1021/am2001828

    Article  CAS  PubMed  Google Scholar 

  13. Joshi, M.K., Tiwari, A.P., Pant, H.R., et al.: In situ generation of cellulose nanocrystals in polycaprolactone nanofibers: effects on crystallinity, mechanical strength, biocompatibility, and biomimetic mineralization. ACS Appl. Mater. Interfaces. 7, 19672–19683 (2015). https://doi.org/10.1021/acsami.5b04682

    Article  CAS  PubMed  Google Scholar 

  14. Tecchio, P., Freni, P., De Benedetti, B., Fenouillot, F.: Ex-ante Life Cycle Assessment approach developed for a case study on bio-based polybutylene succinate. J. Clean. Prod. 112, 316–325 (2016). https://doi.org/10.1016/j.jclepro.2015.07.090

    Article  CAS  Google Scholar 

  15. Joy, J., Jose, C., Varanasi, S.B., et al.: Preparation and characterization of poly(butylene succinate) bionanocomposites reinforced with cellulose nanofiber extracted from Helicteres isora plant. J. Renew. Mater. 4, 351–364 (2016)

    Article  CAS  Google Scholar 

  16. Vatansever, E., Arslan, D., Nofar, M.: Polylactide cellulose-based nanocomposites. Int. J. Biol. Macromol. 137, 912–938 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.205

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y., Cui, L., Xu, H., et al.: Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: rheological, thermal and mechanical properties. Int. J. Biol. Macromol. 137 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.204

  18. Gilding, D.K., Reed, A.M.: Biodegradable polymers for use in surgery-polyglycolic/poly(actic acid) homo- and copolymers: 1. Polymer (Guildf). 20, 1459–1464 (1979). https://doi.org/10.1016/0032-3861(79)90009-0

    Article  CAS  Google Scholar 

  19. Middleton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as medical devices. Mddionline.Com. (2017, August 7). https://www.mddionline.com/news/synthetic-biodegradable-polymers-medical-devices

  20. Tukappa, A., Ultimo, A., De La Torre, C., et al.: Polyglutamic acid-gated mesoporous silica nanoparticles for enzyme-controlled drug delivery. Langmuir. 32, 8507–8515 (2016). https://doi.org/10.1021/acs.langmuir.6b01715

    Article  CAS  PubMed  Google Scholar 

  21. Flieger, M., Kantorová, M., Prell, A., et al.: Biodegradable plastics from renewable sources. Folia Microbiol. (Praha). 48, 27–44 (2003)

    Article  CAS  Google Scholar 

  22. Kapoor, D.N., Bhatia, A., Kaur, R., et al.: PLGA: A unique polymer for drug delivery. Ther. Deliv. 6, 41–58 (2015). https://doi.org/10.4155/tde.14.91

    Article  CAS  PubMed  Google Scholar 

  23. Tang, A., Li, J., Zhao, S., et al.: Biodegradable tissue engineering scaffolds based on nanocellulose/PLGA nanocomposite for NIH 3T3 cell cultivation. J. Nanosci. Nanotechnol. 17, 3888–3895 (2017). https://doi.org/10.1166/jnn.2017.13115

    Article  CAS  Google Scholar 

  24. Luo, H., Cha, R., Li, J., et al.: Advances in tissue engineering of nanocellulose-based scaffolds: a review. Carbohydr. Polym. 224, 115144 (2019). https://doi.org/10.1016/j.carbpol.2019.115144

    Article  CAS  PubMed  Google Scholar 

  25. Odeniyi, M., Omoteso, O., Adepoju, A., Jaiyeoba, K.: Starch nanoparticles in drug delivery: a review. Polym. Med. 48, 41–45 (2019). https://doi.org/10.17219/pim/99993

    Article  Google Scholar 

  26. Tharanathan, R.N.: Starch – value addition by modification. Crit. Rev. Food Sci. Nutr. 45, 371–384 (2005). https://doi.org/10.1080/10408390590967702

    Article  CAS  PubMed  Google Scholar 

  27. Ilyas, R.A., Sapuan, S.M., Norrrahim, M.N.F., Yasim-Anuar, T.A.T., Kadier, A., Kalil, M.S., … Asyraf, M.R.M.: Nanocellulose/starch biopolymer nanocomposites: Processing, manufacturing, and applications. In Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, 65–88 (2020). https://doi.org/10.1016/B978-0-12-819661-8.00006-8

  28. Pérez-Pacheco, E., Canto-Pinto, J.C., Moo-Huchin, V.M., et al.: Thermoplastic Starch (TPS)-cellulosic fibers composites: mechanical properties and water vapor barrier: a review. Compos. Renew. Sustain. Mater. (2016). https://doi.org/10.5772/65397

  29. Sharma, M., Aguado, R., Murtinho, D., Valente, A.J., De Sousa, A.P.M., Ferreira, P.J.: A review on cationic starch and nanocellulose as paper coating components. Int. J. Biol. Macromol. 162, 578–598 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.131

  30. Bagde, P., Nadanathangam, V.: Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydr. Polym. 222, 115021 (2019). https://doi.org/10.1016/j.carbpol.2019.115021

    Article  CAS  PubMed  Google Scholar 

  31. Khamhan, S., Baimark, Y.: Water vapor permeability and mechanical properties of biodegradable chitosan/methoxy poly(ethylene glycol)-b-poly(e-caprolactone) nanocomposite films. Int. J. Polym. Anal. Charact. 13, 224–231 (2008)

    Article  CAS  Google Scholar 

  32. Fernandes, S.C.M., Freire, C.S.R., Silvestre, A.J.D., et al.: Novel materials based on chitosan and cellulose. Polym. Int. 60, 875–882 (2011)

    Article  CAS  Google Scholar 

  33. Yin, J., Luo, K., Chen, X., Khutoryanskiy, V.V.: Miscibility studies of the blends of chitosan with some cellulose ethers. Carbohydr. Polym. (2006). https://doi.org/10.1016/j.carbpol.2005.08.041

  34. Tran, C.D., Duri, S., Delneri, A., Franko, M.: Chitosan-cellulose composite materials: preparation, characterization and application for removal of microcystin. J. Hazard. Mater. (2013). https://doi.org/10.1016/j.jhazmat.2013.02.046

  35. Khoo, R.Z., Ismail, H., Chow, W.S.: Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia Chem. 19, 788–794 (2016). https://doi.org/10.1016/j.proche.2016.03.086

    Article  CAS  Google Scholar 

  36. Rezaeigolestani, M., Misaghi, A., Khanjari, A., et al.: Antimicrobial evaluation of novel poly-lactic acid based nanocomposites incorporated with bioactive compounds in-vitro and in refrigerated vacuum-packed cooked sausages. Int. J. Food Microbiol. 260, 1–10 (2017). https://doi.org/10.1016/j.ijfoodmicro.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  37. Yu, H.Y., Zhang, H., Song, M.L., et al.: From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl. Mater. Interfaces. 9, 43920–43938 (2017). https://doi.org/10.1021/acsami.7b09102

    Article  CAS  PubMed  Google Scholar 

  38. Le Gars, M., Dhuiège, B., Delvart, A., et al.: High-barrier and antioxidant poly(lactic acid)/nanocellulose multilayered materials for packaging. ACS Omega. 5, 22816–22826 (2020). https://doi.org/10.1021/acsomega.0c01955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Varaprasad, K., Jayaramudu, T., Kanikireddy, V., et al.: Alginate-based composite materials for wound dressing application: a mini review. Carbohydr. Polym. 236, 116025 (2020). https://doi.org/10.1016/j.carbpol.2020.116025

    Article  CAS  PubMed  Google Scholar 

  40. Sirviö, J.A., Kolehmainen, A., Liimatainen, H., et al.: Biocomposite cellulose-alginate films: promising packaging materials. Food Chem. 151, 343–351 (2014). https://doi.org/10.1016/j.foodchem.2013.11.037

    Article  CAS  PubMed  Google Scholar 

  41. Klemm, D., Cranston, E.D., Fischer, D., et al.: Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater. Today. 21, 720–748 (2018). https://doi.org/10.1016/j.mattod.2018.02.001

    Article  CAS  Google Scholar 

  42. Martínez Ávila, H., Feldmann, E.M., Pleumeekers, M.M., et al.: Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation invitro and invivo. Biomaterials. 44, 122–133 (2015). https://doi.org/10.1016/j.biomaterials.2014.12.025

    Article  CAS  PubMed  Google Scholar 

  43. Aarstad, O., Heggset, E.B., Pedersen, I.S., et al.: Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils. Polymers (Basel). 9, 378 (2017). https://doi.org/10.3390/polym9080378

    Article  CAS  PubMed Central  Google Scholar 

  44. Siqueira, P., Siqueira, É., de Lima, A.E., et al.: Three-dimensional stable alginate-nanocellulose gels for biomedical applications: towards tunable mechanical properties and cell growing. Nano. 8, 78 (2019). https://doi.org/10.3390/nano9010078

    Article  CAS  Google Scholar 

  45. Chiralt, A., González-Martínez, C., Vargas, M., Atarés, L.: Edible films and coatings from proteins. In: Proteins in Food Processing, 2nd edn, pp. 442–467. Woodhead Publishing Series in Food Science, Technology and Nutrition (Elsevier) (2018). https://doi.org/10.1016/B978-0-08-100722-8.00019-X

  46. Chang, S.T., Chen, L.C., Bin, L.S., Chen, H.H.: Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll. 27, 137–144 (2012). https://doi.org/10.1016/j.foodhyd.2011.08.004

    Article  CAS  Google Scholar 

  47. Liu, Q., Liu, J., Qin, S., et al.: High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. Int. J. Biol. Macromol. 164, 1776–1784 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.044

    Article  CAS  PubMed  Google Scholar 

  48. Haghighi, H., Gullo, M., La China, S., et al.: Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll. 113, 106454 (2020). https://doi.org/10.1016/j.foodhyd.2020.106454

    Article  CAS  Google Scholar 

  49. Wang, W., Zhang, X., Teng, A., Liu, A.: Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. Int. J. Biol. Macromol. 103, 226–233 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.027

    Article  CAS  PubMed  Google Scholar 

  50. Younas, M., Noreen, A., Sharif, A., et al.: A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. Int. J. Biol. Macromol. 124, 591–626 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.064

    Article  CAS  PubMed  Google Scholar 

  51. Daicho, K., Saito, T., Fujisawa, S., Isogai, A.: The crystallinity of nanocellulose: dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Appl. Nano. Mater. 1, 5774–5785 (2018). https://doi.org/10.1021/acsanm.8b01438

    Article  CAS  Google Scholar 

  52. Estela, R., Luis, J.: Hydrolysis of biomass mediated by cellulases for the production of sugars. In: Sustainable Degradation of Lignocellulosic Biomass – Techniques, Applications and Commercialization, pp. 119–155. IntechOpen (2013). https://doi.org/10.5772/53719

  53. Tayeb, A.H., Amini, E., Ghasemi, S., Tajvidi, M.: Cellulose nanomaterials-binding properties and applications: a review. Molecules. 23, 1–24 (2018). https://doi.org/10.3390/molecules23102684

    Article  CAS  Google Scholar 

  54. Wang, H., Li, D., Yano, H., Abe, K.: Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose. 21, 1505–1515 (2014). https://doi.org/10.1007/s10570-014-0222-6

    Article  CAS  Google Scholar 

  55. Blanco, A., Monte, M.C., Campano, C., Balea, A., Merayo, N., Negro, C.: Nanocellulose for industrial use: cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). In Handbook of nanomaterials for industrial applications. 74–126 (2018). https://doi.org/10.1016/B978-0-12-813351-4.00005-5

  56. Koyama, M., Helbert, W., Imai, T., et al.: Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. U. S. A. 94, 9091–9095 (1997). https://doi.org/10.1073/pnas.94.17.9091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, K.Y., Bismarck, A.: Bacterial nanocellulose as reinforcement for polymer matrices. In Bacterial Nanocellulose. 109–122 (2016). https://doi.org/10.1016/B978-0-444-63458-0.00006-8

  58. Saffarionpour, S.: Nanocellulose for stabilization of pickering emulsions and delivery of nutraceuticals and its interfacial adsorption mechanism. Food Bioprocess Technol. 13, 1292–1328 (2020). https://doi.org/10.1007/s11947-020-02481-2

    Article  CAS  Google Scholar 

  59. Iwamoto, S., Lee, S.H., Endo, T.: Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym. J. 46, 73–76 (2014). https://doi.org/10.1038/pj.2013.64

    Article  CAS  Google Scholar 

  60. Agarwal, U.P., Reiner, R.S., Ralph, S.A.: Crystallinity of nanocellulose materials by near-IR FT-Raman spectroscopy. Prod. Appl. Cellul. Nanomater. 1, 43–44 (2013)

    Google Scholar 

  61. HPS, A.K., Saurabh, C.K., Asniza, M., Tye, Y.Y., Fazita, M.R.N., Syakir, M.I., … Suraya, N.L.M.: Nanofibrillated cellulose reinforcement in thermoset polymer composites. In Cellulose-Reinforced Nanofibre Composites. 1–24 (2017). https://doi.org/10.1016/B978-0-08-100957-4.00001-2

  62. Lagerwall, J.P.F., Schütz, C., Salajkova, M., et al.: Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 6, 1–12 (2014). https://doi.org/10.1038/am.2013.69

    Article  CAS  Google Scholar 

  63. Hoeng, F., Denneulin, A., Bras, J.: Use of nanocellulose in printed electronics: a review. Nanoscale. 8, 13131–13154 (2016). https://doi.org/10.1039/c6nr03054h

    Article  CAS  PubMed  Google Scholar 

  64. Wang, P.X., MacLachlan, M.J.: Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376 (2018). https://doi.org/10.1098/rsta.2017.0042

  65. El, O.A., Chaabouni, Y., Msahli, S., Sakli, F.: Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr. Polym. 86, 1221–1229 (2011). https://doi.org/10.1016/j.carbpol.2011.06.037

    Article  CAS  Google Scholar 

  66. Poletto, M., Pistor, V., Zattera, A.J.: Structural characteristics and thermal properties of native cellulose. Cellul. Fundam. Asp. (2013). https://doi.org/10.5772/50452

  67. Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P.: Crystal Structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003). https://doi.org/10.1021/ja037055w

    Article  CAS  PubMed  Google Scholar 

  68. Moon, R.J., Martini, A., Nairn, J., et al.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Soc. Rev. 40(7), 3941–3994 (2011)

    Google Scholar 

  69. Stevanic, J.S., Joly, C., Mikkonen, K.S., Pirkkalainen, K., Serimaa, R., Rémond, C., … Salmén, L.: Bacterial nanocellulose-reinforced arabinoxylan films. J. Appl. Polym. Sci. 122, 1030–1039 (2011). https://doi.org/10.1002/app

  70. Hernández-Varela, J.D., Chanona-Pérez, J.J., Calderón Benavides, H.A., et al.: Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydr. Polym. 255 (2021). https://doi.org/10.1016/j.carbpol.2020.117347

  71. Kafy, A., Kim, H.C., Zhai, L., et al.: Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Sci. Rep. 7, 17683 (2017). https://doi.org/10.1038/s41598-017-17713-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mahfoudhi, N., Boufi, S.: Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose. 24, 1171–1197 (2017)

    Article  CAS  Google Scholar 

  73. Nazrin, A., Sapuan, S.M., Zuhri, M.Y.M., et al.: Nanocellulose reinforced thermoplastic starch (TPS), polylactic acid (PLA), and polybutylene succinate (PBS) for food packaging applications. Front. Chem. 8, 213 (2020). https://doi.org/10.3389/fchem.2020.00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, L., Wang, Q., Hirth, K., et al.: Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose. 22, 1753–1762 (2015). https://doi.org/10.1007/s10570-015-0615-1

    Article  CAS  Google Scholar 

  75. Foster, E.J., Moon, R.J., Agarwal, U.P., et al.: Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 47, 2609–2679 (2018). https://doi.org/10.1039/c6cs00895j

    Article  CAS  PubMed  Google Scholar 

  76. Kalaskar, D.M., Ulijn, R.V., Gough, J.E., et al.: Characterisation of amino acid modified cellulose surfaces using ToF-SIMS and XPS. Cellulose. 17, 747–756 (2010). https://doi.org/10.1007/s10570-010-9413-y

    Article  CAS  Google Scholar 

  77. Cunha, A.G., Freire, C.S.R., Silvestre, A.J.D., et al.: Reversible hydrophobization and lipophobization of cellulose fibers via trifluoroacetylation. J. Colloid Interface Sci. 301, 333–336 (2006). https://doi.org/10.1016/j.jcis.2006.04.078

    Article  CAS  PubMed  Google Scholar 

  78. Missoum, K., Belgacem, M.N., Bras, J.: Nanofibrillated cellulose surface modification: a review. Materials (Basel). 6, 1745–1766 (2013). https://doi.org/10.3390/ma6051745

    Article  Google Scholar 

  79. Flauzino Neto, W.P., Putaux, J.-L., Mariano, M., et al.: Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv. 6, 76017–76027 (2016). https://doi.org/10.1039/C6RA16295A

    Article  CAS  Google Scholar 

  80. Sirviö, J.A., Hasa, T., Ahola, J., et al.: Phosphonated nanocelluloses from sequential oxidative-reductive treatment-Physicochemical characteristics and thermal properties. Carbohydr. Polym. 133, 524–532 (2015). https://doi.org/10.1016/j.carbpol.2015.06.090

    Article  CAS  PubMed  Google Scholar 

  81. Zainuddin, N., Ahmad, I., Kargarzadeh, H., Ramli, S.: Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr. Polym. 163, 261–269 (2017). https://doi.org/10.1016/j.carbpol.2017.01.036

    Article  CAS  PubMed  Google Scholar 

  82. Barkoula, N.M., Alcock, B., Cabrera, N.O., Peijs, T.: Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym. Polym. Compos. 16, 101–113 (2008). https://doi.org/10.1002/pc

    Google Scholar 

  83. Bellayer, S., Gilman, J.W., Eidelman, N., et al.: Preparation of homogeneously dispersed multiwalled carbon nanotube/polystyrene nanocomposites via melt extrusion using trialkyl imidazolium compatibilizer. Adv. Funct. Mater. 15, 910–916 (2005). https://doi.org/10.1002/adfm.200400441

    Article  CAS  Google Scholar 

  84. Martínez-Martínez, V., Corcóstegui, C., Bañuelos Prieto, J., et al.: Distribution and orientation study of dyes intercalated into single sepiolite fibers. A confocal fluorescence microscopy approach. J. Mater. Chem. 21, 269–276 (2011). https://doi.org/10.1039/C0JM02211J

    Article  Google Scholar 

  85. Huang, J.-H., Chien, F.-C., Chen, P., et al.: Monitoring the 3D nanostructures of bulk heterojunction polymer solar cells using confocal lifetime imaging. Anal. Chem. 82, 1669–1673 (2010). https://doi.org/10.1021/ac901992c

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa García Betancourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

García Betancourt, M.L., Osorio-Aguilar, DM. (2022). Physicochemical Characterization of Nanocellulose: Composite, Crystallinity, Morphology. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_9

Download citation

Publish with us

Policies and ethics

Navigation