Electrospinning of Cellulose Nanofibers for Advanced Applications

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

High surface area-to-volume ratio, manipulated porosity, and higher physical and mechanical performance of generated nanoscale fiber are some of the very known advantages of electrospinning process. Cellulose, a naturally abundant polymer with a long history of fiber manufacturing, doesn’t melt. So, it is inevitable to be processed directly from its solution which itself faces several challenges. In this chapter, two strategies – one- and two-step methods – for cellulose electrospinning are reviewed and discussed by comparing the electrospun cellulose nanofibers with the non-electrospun ones. We also have a look at electrospun cellulose blend nanofibers, either in a single fiber morphology or in core-shell ones. There is also a consideration on nanocomposites with a matrix of electrospun cellulose nanofibers.

In view of low density, biodegradability, strength, and hydrophilicity as some of the outstanding properties of electrospun cellulose nanofibers, a vast range of potential applications have been opened for them. One of the applications of cellulose and electrospun nanofiber morphology capabilities is in the biomedical field, exclusively tissue engineering, drug delivery, and antibacterial ones, due to their biocompatibility and non-toxicity. The electrospun cellulose nanofibers have also been attractive for food industries for the immobilization of bioactive substances, food packaging, or providing a controlled release of foods. Moreover, the textile industries as well as separation applications are other demanding fields (both as membranes or absorbents). In the last section of this chapter, utilizing electrospun cellulose nanofibers in these fields is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, K., Barhoum, A., **aoqing, C., Li, H., Samyn, P.: Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques, pp. 409–449. Springer, Cham (2019)

    Google Scholar 

  2. Prasanth, R., Nageswaran, S., Thakur, V.K., Ahn, J.-H.: Electrospinning of Cellulose: Process and Applications, pp. 311–340. John Wiley & Sons, Inc (2014)

    Google Scholar 

  3. Ramakrishna, S.: An Introduction to Electrospinning and Nanofibers. World Scientific (2005)

    Book  Google Scholar 

  4. Santillán-Mercado Jaime, A., Rodríguez-Avilés Yaiel, G., Bello Samir, A., González-Feliciano José, A., Nicolau, E.: Electrospun Cellulose and Nanocellulose Composites as a Biomaterial, pp. 57–107. Springer (2017)

    Google Scholar 

  5. Jatoi, A.W., Kim, I.S., Ni, Q.Q.: A comparative study on synthesis of AgNPs on cellulose nanofibers by thermal treatment and DMF for antibacterial activities. Mater. Sci. Eng. C, 1179–1195 (2019)

    Google Scholar 

  6. Rezaei, A., Nasirpour, A., Fathi, M.: Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Compr. Rev. Food Sci. Food Saf., 269–284 (2015)

    Google Scholar 

  7. Rahmani, S., Rafizadeh, M.: A study on magnetic field of electospinning jet bending instability and magnetic field-assisted alignment mechanism. J Textile Instit, 2147–2153 (2017)

    Google Scholar 

  8. Rahmani, S., Rafizadeh, M., Afshar, T.F.: Statistical analysis of nanofibers alignment in magnetic-field-assisted electrospinning including an alignment percentage formula. J. Appl. Polym. Sci., 1–8 (2014)

    Google Scholar 

  9. Pintauro Peter, N., Jun-Woo, P., Shahrzad, R., Devon, P., Ryszard, W., Trung, V.N., Ahmad, A.: Electrospinning strategies for PFSA/PVDF nanofiber composite membrane fabrication. (2016)

    Google Scholar 

  10. Long, Y.-Z., Yan, X., Wang, X.-X., Zhang, J., Yu, M.: Electrospinning: The Setup and Procedure, pp. 21–52. Elsevier (2019)

    Google Scholar 

  11. Xu, C.Y., Inai, R., Kotaki, M., Ramakrishna, S.: Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 877–886 (2004)

    Google Scholar 

  12. Katta, P., Alessandro, M., Ramsier, R.D., Chase, G.G.: Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano. Lett., 2215–2218 (2004)

    Google Scholar 

  13. Zheng, J., Yan, X., Li, M.-M., Yu, G.-F., Zhang, H.-D., Pisula, W., He, X.-X., Duvail, J.-L., Long, Y.-Z.: Electrospun aligned fibrous arrays and twisted ropes: fabrication, mechanical and electrical properties, and application in strain sensors. Nanoscale Res. Lett., 475 (2015)

    Google Scholar 

  14. Rahmani, S., Arefazar, A., Latifi, M.: PMMA/PS coaxial electrospinning: a statistical analysis on processing parameters. Mater. Res. Express, 085024 (2017)

    Google Scholar 

  15. Rahmani, S., Arefazar, A., Latifi, M.: PMMA/PS coaxial electrospinning: core–shell fiber morphology as a function of material parameters. Mater. Res Express, 035304 (2017)

    Google Scholar 

  16. Li, M., Long, Y.-Z., Yang, D., Jiashu, S., Hongxing, Y., Zhili, Z., Wenhao, K., **ngyu, J., Zhiyong, F.: Fabrication of one dimensional superfine polymer fibers by double-spinning. J. Mater. Chem., 13159–13162 (2011)

    Google Scholar 

  17. Sun, B., Long, Y.-Z., Liu, S.-L., Huang, Y.-Y., Ma, J., Zhang, H.-D., Shen, G., Xu, S.: Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale, 7041–7045 (2013)

    Google Scholar 

  18. Memarian, F., Rahmani, S., Yousefzadeh, M., Latifi, M.: Wearable Technologies in Sportswear, pp. 123–160. Elsevier (2019)

    Google Scholar 

  19. Frey Margaret, W.: Electrospinning cellulose and cellulose derivatives. Polym. Rev., 378–391 (2008)

    Google Scholar 

  20. Anchal, A., Anil, J., Manik, B., Kartick, S., Prasad, S., Charlene, D., Nadanathangam, V.: Performance characteristics of electrospun cellulose acetate nanofiber mat embedded with Nano-Zno/vitamins. Int. J. Nanotechnol. Appl. (2016). ISSN (P) 2277-4777

    Google Scholar 

  21. Jiji, S., Thenmozhi, S., Kadirvelu, K.: Comparison on properties and efficiency of bacterial and electrospun cellulose nanofibers. Fibers Polym., 2498–2506 (2018)

    Google Scholar 

  22. Hsieh, Y.-L.: Cellulose Nanofibers: Electrospinning and Nanocellulose Self-Assemblies, pp. 67–95. John Wiley & Son (2018)

    Google Scholar 

  23. Arcot, L.R., Gröschel, A.H., Linder, M.B., Rojas, O.J., Olli, I.: Self-Assembly of Native Cellulose Nanostructures, pp. 123–174. Wiley-VCH Verlag GmbH & Co. KGaA (2017)

    Google Scholar 

  24. Kim, C.-W., Frey, M.W., Marquez, M., Joo, Y.L.: Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J. Polym. Sci. B Polym. Phys., 1673–1683 (2005)

    Google Scholar 

  25. Matsumoto, T., Tatsumi, D., Tamai, N., Takaki, T.: Solution properties of celluloses from different biological origins in LiCl DMAc. Cellulose, 275–282 (2001)

    Google Scholar 

  26. McCormick Charles, L., Callais Peter, A., Hutchinson Jr Brewer, H.: Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules, 2394–2401 (1985)

    Google Scholar 

  27. Kim, C.-W., Kim, D.-S., Kang, S.-Y., Marquez, M., Joo, Y.L.: Structural studies of electrospun cellulose nanofibers. Polymer, 5097–5107 (2006)

    Google Scholar 

  28. Kulpinski, P.: Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J. Appl. Polym. Sci., 1855–1859 (2005)

    Google Scholar 

  29. Ahn, Y., Hu, D.-H., Hong, J.H., Lee, S.H., Kim, H.J., Kim, H.: Effect of co-solvent on the spinnability and properties of electrospun cellulose nanofiber. Carbohydr. Polym., 340–345 (2012)

    Google Scholar 

  30. Ohkawa, K.: Nanofibers of cellulose and its derivatives fabricated using direct electrospinning. Molecules, 9139–9154 (2015)

    Google Scholar 

  31. Otsuka, I., N**ang, C.N., Borsali, R.: Simple fabrication of cellulose nanofibers via electrospinning of dissolving pulp and tunicate. Cellulose, 3281–3288 (2017)

    Google Scholar 

  32. Li, C., Chen, R., Zhang, X., **ong, J., Zheng, Y., Dong, W.: Fabrication and characterization of electrospun nanofibers of high DP natural cotton lines cellulose. Fibers Polym., 345–351 (2011)

    Google Scholar 

  33. Xu, S., Zhang, J., He, A., Li, J., Zhang, H., Han, C.C.: Electrospinning of native cellulose from nonvolatile solvent system. Polymer, 2911–2917 (2008)

    Google Scholar 

  34. Viswanathan, G., Murugesan, S., Pushparaj, V., Nalamasu, O., Ajayan, P.M., Linhardt, R.J.: Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules, 415–418 (2006)

    Google Scholar 

  35. Son, W.K., Youk, J.H., Lee, T.S., Park, W.H.: Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J. Polym. Sci. B Polym. Phys., 5–11 (2004)

    Google Scholar 

  36. Li, C., Wang, Z.-H., Yu, D.-G., Williams, G.R.: Tunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process. Nanoscale Res. Lett., 258 (2014)

    Google Scholar 

  37. Frenot, A., Henriksson, M.W., Walkenström, P.: Electrospinning of cellulose-based nanofibers. J. Appli. Polym. Sci., 1473–1482 (2007)

    Google Scholar 

  38. Aytac, Z., Sen, H.S., Durgun, E., Uyar, T.: Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf. B Biointerfaces, 331–338 (2015)

    Google Scholar 

  39. Zhao, S., Wu, X., Wang, L., Huang, Y.: Electrospinning of ethyl–cyanoethyl cellulose/tetrahydrofuran solutions. J. Appl. Polym. Sci., 242–246 (2004)

    Google Scholar 

  40. Liu, H., Hsieh, Y.-L.: Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. B Polym. Phys., 2119–2129 (2002)

    Google Scholar 

  41. Khatri, Z., Wei, K., Kim, B.-S., Kim, I.-S.: Effect of deacetylation on wicking behavior of co-electrospun cellulose acetate/polyvinyl alcohol nanofibers blend. Carbohydr. Polym., 2183–2188 (2012)

    Google Scholar 

  42. Zahedi, P., Rafie, A., Wojczak, E.: Morphological and thermal properties of optimized electrospun cellulose acetate nanofibres during deacetylation in different pH values. Indian J. Fiber Text. Res., 13–18 (2016)

    Google Scholar 

  43. Ahmed, F., Arbab, A.A., Jatoi, A.W., Khatri, M., Memon, N., Khatri, Z., Kim, I.S.: Ultrasonic-assisted deacetylation of cellulose acetate nanofibers: a rapid method to produce cellulose nanofibers. Ultrason. Sonochem., 319–325 (2017)

    Google Scholar 

  44. Ma, Z., Kotaki, M., Ramakrishna, S.: Electrospun cellulose nanofiber as affinity membrane. J. Membr. Sci., 115–123 (2005)

    Google Scholar 

  45. Filion Tera, M., Kutikov, A., Song, J.: Chemically modified cellulose fibrous meshes for use as tissue engineering scaffolds. Bioorganic Med. Chem. Lett., 5067–5070 (2011)

    Google Scholar 

  46. Zhang, K., Li, Z., Kang, W., Deng, N., Yan, J., Ju, J., Liu, Y., Cheng, B.: Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method. Carbohydr. Polym., 62–69 (2018)

    Google Scholar 

  47. Rodríguez, K., Renneckar, S., Gatenholm, P.: Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl. Mater. Interfaces, 681–689 (2011)

    Google Scholar 

  48. Thunberg, J., Kalogeropoulos, T., Kuzmenko, V., Hägg, D., Johannesson, S., Westman, G., Gatenholm, P.: In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering. Cellulose, 1459–1467 (2015)

    Google Scholar 

  49. Rodríguez, K., Gatenholm, P., Renneckar, S.: Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose, 1583–1598 (2012)

    Google Scholar 

  50. Deng, L., Young Robert, J., Kinloch Ian, A., Zhu, Y., Eichhorn Stephen, J.: Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon, 66–75 (2013)

    Google Scholar 

  51. Hanumantharao, S.N., Rao, S.: Multi-functional electrospun nanofibers from polymer blends for scaffold tissue engineering. Fibers. 66 (2019)

    Google Scholar 

  52. Ali, S., Khatri, Z., Oh, K.W., Kim, I.-S., Kim, S.H.: Preparation and characterization of hybrid polycaprolactone/cellulose ultrafine fibers via electrospinning. Macromol. Res., 562–568 (2014)

    Google Scholar 

  53. Ahmed, F., Saleemi, S., Khatri, Z., Abro, M.I., Kim, I.-S.: Co-electrospun poly (e-caprolactone)/cellulose nanofibers-fabrication and characterization. Carbohydr. Polym., 388–393 (2015)

    Google Scholar 

  54. Du, J., Hsieh, Y.-L.: Cellulose/chitosan hybrid nanofibers from electrospinning of their ester derivatives. Cellulose, 247–260 (2009)

    Google Scholar 

  55. Devarayan, K., Hanaoka, H., Hachisu, M., Araki, J., Ohguchi, M., Behera, B.K., Ohkawa, K.: Direct electrospinning of cellulose–chitosan composite nanofiber. Macromol. Mater. Eng., 1059–1064 (2013)

    Google Scholar 

  56. Park, T.-J., Jung, Y.J., Choi, S.-W., Park, H., Kim, H., Kim, E., Lee, S.H., Kim, J.H.: Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromol. Res., 213–215 (2011)

    Google Scholar 

  57. Qi, H., Sui, X., Yuan, J., Wei, Y., Zhang, L.: Electrospinning of cellulose-based fibers from NaOH/urea aqueous system. Macromol. Mater. Eng., 695–700 (2010)

    Google Scholar 

  58. Feng, Q., Wu, D., Zhao, Y., Wei, A., Wei, Q., Fong, H.: Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J. Hazard. Mater., 819–828 (2018)

    Google Scholar 

  59. **ang, T., Zhang, Z.L., Liu, H.Q., Yin, Z.Z., Li, L., Liu, X.M.: Characterization of cellulose-based electrospun nanofiber membrane and its adsorptive behaviours using Cu(II), Cd(II), Pb(II) as models. Sci. China Chem., 567–575 (2013)

    Google Scholar 

  60. Gopiraman, M., Deng, D., Saravanamoorthy, S., Chung, I.-M., Kim, I.S.: Gold, silver and nickel nanoparticle anchored cellulose nanofiber composites as highly active catalysts for the rapid and selective reduction of nitrophenols in water. RSC Adv., 3014–3023 (2018)

    Google Scholar 

  61. Gaminian, H., Montazer, M.: Carbon black enhanced conductivity, carbon yield and dye adsorption of sustainable cellulose derived carbon nanofibers. Cellulose, 5227–5240 (2018)

    Google Scholar 

  62. Pang, Z., Yang, Z., Chen, Y., Zhang, J., Wang, Q., Huang, F., Wei, Q.: A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf. A Physicochem. Eng. Aspects, 248–255 (2016)

    Google Scholar 

  63. Inukai, S., Kurokawa, N., Hotta, A.: Annealing and saponification of electrospun cellulose-acetate nanofibers used as reinforcement materials for composites. Compos. Part A Appl. Sci. Manuf., 158–165 (2018)

    Google Scholar 

  64. Cai, J., Lei, M., Zhang, Q., He, J.-R., Chen, T., Liu, S., Fu, S.-H., Li, T.-T., Liu, G., Fei, P.: Electrospun composite nanofiber mats of Cellulose@ Organically modified montmorillonite for heavy metal ion removal: Design, characterization, evaluation of absorption performance. Compos. Part A Appl. Sci. Manuf., 10–16 (2017)

    Google Scholar 

  65. Cai, J., Chen, J., Zhang, Q., Lei, M., He, J., **ao, A., Ma, C., Li, S., **ong, H.: Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: mechanical and optical properties. Carbohydr. Polym., 238–245 (2016)

    Google Scholar 

  66. Kalwar, K., Shen, M.: Electrospun cellulose acetate nanofibers and Au@AgNPs for antimicrobial activity-A mini review. Nanotechnol. Rev., 246–257 (2019)

    Google Scholar 

  67. Kalwar, K., Hu, L., L.,.D.-L., Shan, D.: AgNPs incorporated on deacetylated electrospun cellulose nanofibers and their effect on the antimicrobial activity. Polym. Adv. Technol., 394–400 (2018)

    Google Scholar 

  68. Gopiraman, M., Jatoi, A.W., Hiromichi, S., Yamaguchi, K., Jeon, H.-Y., Chung, I.-M., Soo, K.I.: Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohydr. Polym., 51–59 (2016)

    Google Scholar 

  69. Murugan, R., Ramakrishna, S.: Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 3829–3835 (2004)

    Google Scholar 

  70. Pham Quynh, P., Sharma, U., Mikos Antonios, G.: Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng., 1197–1211 (2006)

    Google Scholar 

  71. **, L., Wang, T., Zhu, M.-L., Leach Michelle, K., Naim Youssef, I., Corey Joseph, M., Feng, Z.-Q., Jiang, Q.: Electrospun fibers and tissue engineering. J. Biomed. Nanotechnol., 1–9 (2012)

    Google Scholar 

  72. Sill Travis, J., Von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 1989–2006 (2008)

    Google Scholar 

  73. Sajesh, K.M., Kiran, K., Nair Shantikumar, V., Jayakumar, R.: Sequential layer-by-layer electrospinning of nano SrCO3/PRP loaded PHBV fibrous scaffold for bone tissue engineering. Compos. Part B Eng., 445–452 (2016)

    Google Scholar 

  74. Pandi, K., Viswanathan, N.: In situ precipitation of nano-hydroxyapatite in gelatin polymatrix towards specific fluoride sorption. Int. J. Biol. Macromol., 351–359 (2015)

    Google Scholar 

  75. Shin, E.J., Choi, S.M., Singh, D., Zo, S.M., Lee, Y.H., Kim, J.H., Han, S.S.: Fabrication of cellulose-based scaffold with microarchitecture using a leaching technique for biomedical applications. Cellulose, 3515–3525 (2014)

    Google Scholar 

  76. Ao, C., Niu, Y., Zhang, X., He, X., Zhang, W., Lu, C.: Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int. J. Biol. Macromol., 568–573 (2017)

    Google Scholar 

  77. Jonoobi, M., Harun, J., Mathew, A.P., Oksman, K.: Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol., 1742–1747 (2010)

    Google Scholar 

  78. Zhang, C., Salick Max, R., Cordie Travis, M., Ellingham, T., Dan, Y., Turng, L.-S.: Incorporation of poly (ethylene glycol) grafted cellulose nanocrystals in poly (lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater. Sci. Eng. C, 463–471 (2015)

    Google Scholar 

  79. He, X., Cheng, L., Zhang, X., **ao, Q., Zhang, W., Lu, C.: Tissue engineering scaffolds electrospun from cotton cellulose. Carbohydr. Polym., 485–493 (2015)

    Google Scholar 

  80. He, X., **ao, Q., Lu, C., Wang, Y., Zhang, X., Zhao, J., Zhang, W., Zhang, X., Deng, Y.: Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules, 618–627 (2014)

    Google Scholar 

  81. Wang, X., Ding, B., Li, B.: Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today, 229–241 (2013)

    Google Scholar 

  82. Bendrea, A.-D., Cianga, L., Cianga, I.: Progress in the field of conducting polymers for tissue engineering applications. J. Biomater. Appl., 3–84 (2011)

    Google Scholar 

  83. Muller, D., Silva João, P., Rambo, C.R., Barra, G.M.O., Dourado, F., Gama, F.M.: Neuronal cells’ behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds. J. Biomater. Sci. Polym. Ed., 1368–1377 (2013)

    Google Scholar 

  84. Shi, Z., Gao, H., Feng, J., Ding, B., Cao, X., Kuga, S., Wang, Y., Zhang, L., Cai, J.: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew. Chem. Int. Ed., 5380–5384 (2014)

    Google Scholar 

  85. Joy, J., Pereira, J., Aid-Launais, R., Pavon-Djavid, G., Ray Alok, R., Letourneur, D., Meddahi-Pellé, A., Gupta, B.: Gelatin – oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int. J. Biol. Macromol., 1922–1935 (2018)

    Google Scholar 

  86. Naseri-Nosar, M., Salehi, M., Hojjati-Emami, S.: Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int. J. Biol. Macromol., 701–708 (2017)

    Google Scholar 

  87. Chen, P.-H., Liao, H.-C., Hsu, S.-H., Chen, R.-S., Wu, M.-C., Yang, Y.-F., Wu, C.-C., Chen, M.-H., Su, W.-F.: A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Adv., 6932–6939 (2015)

    Google Scholar 

  88. Ashraf, R., Sofi Hasham, S., Akram, T., Rather, H.A., Abdal-hay, A., Shabir, N., Vasita, R., Alrokayan Salman, H., Khan Haseeb, A., Sheikh Faheem, A.: Fabrication of multifunctional cellulose/TiO2/Ag composite nanofibers scaffold with antibacterial and bioactivity properties for future tissue engineering applications. J. Biomed. Mater. Res. A, 947–962 (2020)

    Google Scholar 

  89. Chen, S., Li, R., Li, X., **e, J.: Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine. Adv. Drug Deliv. Rev., 188–213 (2018)

    Google Scholar 

  90. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2223–2253 (2003)

    Google Scholar 

  91. Nam, S., Lee, S.Y., Cho, H.-J.: Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma. J. Colloid Interface Sci., 112–120 (2017)

    Google Scholar 

  92. Wang, H., Feng, Y., Zhao, H., Lu, J., Guo, J., Behl, M., Lendlein, A.: Controlled heparin release from electrospun gelatin fibers. J. Control. Release. (2011)

    Google Scholar 

  93. Gouda, R., Baishya, H., Qing, Z.: Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J. Dev. Drugs. (2017)

    Google Scholar 

  94. Thakkar, S., Misra, M.: Electrospun polymeric nanofibers: new horizons in drug delivery. Eur. J. Pharm. Sci., 148–167 (2017)

    Google Scholar 

  95. Ghafoor, B., Aleem, A., Ali, M.N., Mir, M.: Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. J. Drug Deliv. Sci. Technol., 82–87 (2018)

    Google Scholar 

  96. Wsoo, M.A., Shafinaz, S., Bohari, S.P.M., Nayan, N.H.M., Abd Razak, S.I.: A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: a new perspective. Carbohydr. Res., 107978–107990 (2020)

    Google Scholar 

  97. Suwantong, O., Opanasopit, P., Ruktanonchai, U., Supaphol, P.: Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, 7546–7557 (2007)

    Google Scholar 

  98. Tungprapa, S., Jangchud, I., Supaphol, P.: Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer, 5030–5041 (2007)

    Google Scholar 

  99. Chung, J., Kwak, S.-Y.: Effect of nanoscale confinement on molecular mobility and drug release properties of cellulose acetate/sulindac nanofibers. J. Appl. Polym. Sci., 47863 (2019)

    Google Scholar 

  100. Phiriyawirut, M., Phaechamud, T.: Cellulose acetate electrospun fiber mats for controlled release of silymarin. J. Nanosci. Nanotechnol., 793–799 (2012)

    Google Scholar 

  101. Suwantong, O., Ruktanonchai, U., Supaphol, P.: Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside. Polymer, 4239–4247 (2008)

    Google Scholar 

  102. Thitiwongsawet, P., Boonruang, T., Noochsuparb, T.: Electrospun cellulose acetate fiber mats as carriers for crude extracts from Phyllanthus Emblica Linn. Fruits. 03001 (2016)

    Google Scholar 

  103. Ghorani, B., Goswami, P., Blackburn Richard, S., Russell Stephen, J.: Enrichment of cellulose acetate nanofibre assemblies for therapeutic delivery of L-tryptophan. Int. J. Biol. Macromol., 1–8 (2018)

    Google Scholar 

  104. Vlachou, M., Kikionis, S., Siamidi, A., Tragou, K., Ioannou, E., Roussis, V., Tsotinis, A.: Modified in vitro release of melatonin loaded in nanofibrous electrospun mats incorporated into monolayered and three-layered tablets. J. Pharmaceut. Sci., 970–976 (2019)

    Google Scholar 

  105. Taepaiboon, P., Rungsardthong, U., Supaphol, P.: Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharmaceut. Biopharmaceut., 387–397 (2007)

    Google Scholar 

  106. Huang, C., Soenen Stefaan, J., van Gulck, E., Vanham, G., Rejman, J., Van Calenbergh, S., Vervaet, C., Coenye, T., Verstraelen, H., Temmerman, M.: Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials, 962–969 (2012)

    Google Scholar 

  107. El-Newehy Mohamed H, El-Naggar Mehrez E, Alotaiby, Saleh, El-Hamshary, Hany, Moydeen, Meera, Al-Deyab, Salem (2018) Green electrospinning of hydroxypropyl cellulose nanofibres for drug delivery applications. J. Nanosci. Nanotechnol. 805–814

    Google Scholar 

  108. Gencturk, A., Kahraman, E., Güngör, S., Özhan, G., Özsoy, Y., Sarac, A.S.: Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artif. Cells Nanomed. Biotechnol., 655–664 (2017)

    Google Scholar 

  109. Noruzi, M.: Electrospun nanofibres in agriculture and the food industry: a review. J. Sci. Food Agric., 4663–4678 (2016)

    Google Scholar 

  110. Fabra María, J., Busolo María, A., Lopez-Rubio, A., Lagaron Jose, M.: Nanostructured biolayers in food packaging. Trends Food Sci. Technol., 79–87 (2013)

    Google Scholar 

  111. Bastarrachea Luis, J., Wong Dana, E., Roman Maxine, J., Lin, Z., Goddard Julie, M.: Active packaging coatings. Coatings, 771–791 (2015)

    Google Scholar 

  112. Doyle James, J., Choudhari, S., Ramakrishna, S., Babu Ramesh, P. (2013) Electrospun nanomaterials: biotechnology, food, water, environment, and energy

    Google Scholar 

  113. Fathi, M., Martin, A., McClements, D.J.: Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol., 18–39 (2014)

    Google Scholar 

  114. Datta, S., Christena, L.R., Rajaram, Y.R.S.: Enzyme immobilization: an overview on techniques and support materials. Biotech. 3, 1–9 (2013)

    Google Scholar 

  115. Yang, Y.M., Wang, J.W., Tan, R.X.: Immobilization of glucose oxidase on chitosan–SiO2 gel. Enzym. Microb. Technol., 126–131 (2004)

    Google Scholar 

  116. Aravindan, R., Anbumathi, P., Viruthagiri, T.: Lipase applications in food industry. Indian J. Biotechnol., 141–158 (2007)

    Google Scholar 

  117. Wang, Y., Hsieh, Y.-L.: Enzyme immobilization to ultra-fine cellulose fibers via amphiphilic polyethylene glycol spacers. J. Polym. Sci. A Polym. Chem., 4289–4299 (2004)

    Google Scholar 

  118. Bhushani, J.A., Anandharamakrishnan, C.: Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci. Technol., 21–33 (2014)

    Google Scholar 

  119. Son, W.K., Youk, J.H., Park, W.H.: Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr. Polym., 430–434 (2006)

    Google Scholar 

  120. Anitha, S., Brabu, B., Thiruvadigal, D.J., Gopalakrishnan, C., Natarajan, T.S.: Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr. Polym., 1065–1072 (2012)

    Google Scholar 

  121. Korehei, R., Kadla John, F.: Encapsulation of T4 bacteriophage in electrospun poly (ethylene oxide)/cellulose diacetate fibers. Carbohydr. Polym., 150–157 (2014)

    Google Scholar 

  122. Amalraj, A., Gopi, S., Thomas, S., Haponiuk, J.T.: Cellulose Nanomaterials in biomedical, food, and Nutraceutical applications: A review. (2018) 1800115

    Google Scholar 

  123. Baji, A., Agarwal, K., Oopath, S.V.: Emerging developments in the use of electrospun Fibers and membranes for protective clothing applications. Polymers. 492 (2020)

    Google Scholar 

  124. Zhao, J., Li, Y., Sheng, J., Wang, X., Liu, L., Yu, J., Ding, B.: Environmentally friendly and breathable fluorinated polyurethane fibrous membranes exhibiting robust waterproof performance. ACS Appl. Mater. Interfaces, 29302–29310 (2017)

    Google Scholar 

  125. Yu, X., Wu, X., Yang, S., Wang, X., Yu, J., Ding, B.: Waterproof and breathable electrospun nanofibrous membranes. Macromol. Rapid Commun. 1800931 (2019)

    Google Scholar 

  126. Wu, S., Zhang, Y., Liu, P., Qin, X.: Polyacrylonitrile nanofiber yarns and fabrics produced using a novel electrospinning method combined with traditional textile techniques. Text. Res. J., 1716–1727 (2016)

    Google Scholar 

  127. Jiang, S., Ma Beatriz, C., Reinholz, J., Li, Q., Wang, J., Zhang, K.A.I., Landfester, K., Crespy, D.: Efficient nanofibrous membranes for antibacterial wound dressing and UV protection. ACS Appl. Mater. Interfaces, 29915–29922 (2016)

    Google Scholar 

  128. Li, C., Shu, S., Chen, R., Chen, B., Dong, W.: Functionalization of electrospun nanofibers of natural cotton cellulose by cerium dioxide nanoparticles for ultraviolet protection. J. Appl. Polym. Sci., 1524–1529 (2013)

    Google Scholar 

  129. Nasouri, K.: Fabrication of lightweight and flexible cellulose acetate composite nanofibers for high-performance ultra violet protective materials. Polym. Compos., 3325–3332 (2019)

    Google Scholar 

  130. Bedford, N.M., Steckl, A.J.: Photocatalytic self cleaning textile fibers by coaxial electrospinning. ACS Appl. Mater. Interfaces, 2448–2455 (2010)

    Google Scholar 

  131. Konwarh, R., Karak, N., Misra, M.: Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol. Adv., 421–437 (2013)

    Google Scholar 

  132. Yuan, G., Prabakaran, M., Qilong, S., Lee, J.S., Chung, I.-M., Gopiraman, M., Song, K.-H., Kim, I.S.: Cyclodextrin functionalized cellulose nanofiber composites for the faster adsorption of toluene from aqueous solution. J. Taiwan Instit. Chem. Eng., 352–358 (2017)

    Google Scholar 

  133. Trinh, T.A., Han, Q., Ma, Y., Chew, J.W.: Microfiltration of oil emulsions stabilized by different surfactants. Journal of Membrane Science, 199–209 (2019)

    Google Scholar 

  134. Gao, P., Liu, Z., Sun, D.D., Ng, W.J.: The efficient separation of surfactant-stabilized oil–water emulsions with a flexible and superhydrophilic graphene–TiO 2 composite membrane. J. Mater. Chem. A, 14082–14088 (2014)

    Google Scholar 

  135. Saeed, K., Haider, S., Oh, T.-J., Park, S.-Y.: Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci., 400–405 (2008)

    Google Scholar 

  136. Ma, H., Hsiao Benjamin, S., Chu, B.: Electrospun nanofibrous membrane for heavy metal ion adsorption. Curr. Org. Chem., 1361–1370 (2013)

    Google Scholar 

  137. Tian, Y., Wu, M., Liu, R., Li, Y., Wang, D., Tan, J., Wu, R., Huang, Y.: Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr. Polym., 743–748 (2011)

    Google Scholar 

  138. Chitpong, N., Husson Scott, M.: Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J. Membr. Sci., 418–429 (2017)

    Google Scholar 

  139. Liu, K., Huang, Z., Dai, J., Jiang, Y., Yang, G., Liu, Y., Lin, C., Lv, Y., Liu, M.: Fabrication of amino-modified electrospun nanofibrous cellulose membrane and adsorption for typical organoarsenic contaminants: Behavior and mechanism, Chem. Eng. J., 122775 (2020)

    Google Scholar 

  140. Goh, P.S., Zulhairun, A.K., Ismail, A.F., Hilal, N.: Contemporary antibiofouling modifications of reverse osmosis desalination membrane: a review. Desalination. 114072 (2019)

    Google Scholar 

  141. Nassrullah, H., Makanjuola, O., Janajreh, I., AlMarzooqi Faisal, A., Hashaikeh, R.: Incorporation of nanosized LTL zeolites in dual-layered PVDF-HFP/cellulose membrane for enhanced membrane distillation performance. J. Membr. Sci., 118298 (2020)

    Google Scholar 

  142. Dizge, N., Shaulsky, E., Karanikola, V.: Electrospun cellulose nanofibers for superhydrophobic and oleophobic membranes. J. Membr. Sci. 117271 (2019)

    Google Scholar 

  143. Huang, F., Xu, Y., Peng, B., Su, Y., Jiang, F., Hsieh, Y.-L., Wei, Q.: Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery. ACS Sustain. Chem. Eng., 932–940 (2015)

    Google Scholar 

  144. Ma, L., Shi, X., Zhang, X., Dong, S., Li, L.: Electrospun cellulose acetate–polycaprolactone/chitosan core–shell nanofibers for the removal of Cr (VI). physica status solidi (a), 1900379 (2019)

    Google Scholar 

  145. Chen, Chuang, Li, Fengli, Guo, Zihao, Qu, **aoyang, Wang, **gtao, Zhang, Jie (2019) Preparation and performance of aminated polyacrylonitrile nanofibers for highly efficient copper ion removal. Colloids Surf. A Physicochem. Eng. Aspects 334–344

    Google Scholar 

  146. Yu, X., Tong, S., Ge, M., Wu, L., Zuo, J., Cao, C., Song, W.: Synthesis and characterization of multi-amino-functionalized cellulose for arsenic adsorption. Carbohydrate Polym., 380–387 (2013)

    Google Scholar 

  147. Hasanin Mohamed, S.: Sustainable hybrid silica extracted from rice husk with polyvinyl alcohol and nicotinic acid as multi adsorbent for textile wastewater treatment. Environ. Sci. Pollut. Res. (2020)

    Google Scholar 

  148. Olaru, N., Anghel, N., Pascariu, P., Ailiesei, G.: Synthesis and testing of cellulose acetate nicotinate as adsorbent for rhodamine B dye. J. Appl. Polym. Sci., 47772 (2019)

    Google Scholar 

  149. Muqeet, M., Khalique, A., Qureshi, U.A., Mahar, R.B., Ahmed, F., Khatri, Z., Kim, I.S., Brohi, K.M.: Aqueous hardness removal by anionic functionalized electrospun cellulose nanofibers. Cellulose, 5985–5997 (2018)

    Google Scholar 

  150. Stephen, M., Catherine, N., Brenda, M., Andrew, K., Leslie, P., Corrine, G.: Oxolane-2, 5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J. Hazard. Mater., 922–927 (2011)

    Google Scholar 

  151. Gopiraman, M., Bang, H., Yuan, G., Yin, C., Song, K.-H., Lee, J.S., Chung, I.M., Karvembu, R., Kim, I.S.: Noble metal/functionalized cellulose nanofiber composites for catalytic applications. Carbohydr. Polym., 554–564 (2015)

    Google Scholar 

  152. Wang, S., Luo, T., Zhu, J., Zhang, X., Su, S.: A facile way to fabricate cellulose-Ag@ AgCl composites with photocatalytic properties. Cellulose, 3737–3745 (2016)

    Google Scholar 

  153. Li, J., Cao, J., Zhang, X., Wang, S., Zheng, Y., Pan, J., Li, C.: Preparation of cotton cellulose nanofibers/ZnO/CdS nanocomposites and its photocatalytic activity. J. Mater. Sci. Mater. Electr., 1479–1484 (2016)

    Google Scholar 

  154. Teixeira Marta, A., Paiva Maria, C., Amorim, M., Teresa, P.: Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials, 557 (2020)

    Google Scholar 

  155. Liu, X., Lin, T., Gao, Y., Xu, Z., Huang, C., Yao, G., Jiang, L., Yanwei, T., Xungai, W.: Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J. Biomed. Mater. Res. Part B Appl. Biomater., 1556–1565 (2012)

    Google Scholar 

  156. Samadian, H., Salehi, M., Farzamfar, S., Vaez, A., Ehterami, A., Sahrapeyma, H., Goodarzi, A., Ghorbani, S.: In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif. Cells Nanomed. Biotechnol., 964–974 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrzad Rahmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rahmani, S., Khoubi-Arani, Z., Mohammadzadeh-Komuleh, S., Maroufkhani, M. (2022). Electrospinning of Cellulose Nanofibers for Advanced Applications. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_14

Download citation

Publish with us

Policies and ethics

Navigation