Enhanced Hash Value and Public Key Infrastructure Generations for Blockchains Using Sooner Lightweight Cryptography

  • Chapter
  • First Online:
Blockchain Applications in the Smart Era

Abstract

Blockchain technology (BT) uses strong cryptographic approaches to offer integrity to digital ledger systems by safeguarding them against data tampering on public channels in a trustless manner. BT concept has been deployed in cryptocurrency (or Bitcoin) to minimize double-spending. Confidentiality and privacy preservations continue to limit the benefits of BTs due to the openness of its transactions and publicly distributed ledger technology. To this time, anonymization and encryption-based mechanisms have been utilized to overcome these challenges. Particularly, BTs have the potentials to overcome the Internet of Things (IoT) privacy and security issues with the birth of BT-based IoT systems in recent times. These systems are less effective and less secure because large computations are involved during the forging of public key infrastructure (PKI), personally identifiable information (PII) is publicly available, and longer hash values are required, which are less supportive of real-time applications of resource-constrained devices. Consequently, a lightweight cryptosystem known as Sooner-C is proposed in this paper to reduce the complexity while improving the encryption and hashing used in BTs. The outcomes revealed that the proposed Sooner-C is more effective when compared to the traditional BT’s cryptosystem using encryption time (1672.2 secs to 18385.3 secs), decryption time (618.8 secs to 806 secs), ciphertext size (32-bits to 79-bits), and number of rounds (15 to 10), respectively. Therefore, it is recommended to offer privacy and integrity for blockchain-based applications by 61.21% (32-bits key size) to 38.79% (256-bits key size) as chances of breaking ciphertexts, hash values, and PKIs generated against traditional cryptosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ji, Y., Zhang, J., Ma, J., Yang, C., & Yao, X. (2018). BMPLS: Blockchain-based multi-level privacy-preserving location sharing scheme for telecare medical information systems. Journal of Medical Systems, 42(8), 147. https://doi.org/10.1007/s10916-018-0998-2

    Article  Google Scholar 

  2. Zhu, L., Zheng, B., Shen, M., Yu, S., Gao, F., Li, H., Shi, K., & Gai, K. (2018). Research on the security of blockchain data: A survey. ar**v preprint. http://arxiv.org/abs/1812.02009

  3. Abayomi-Zannu, T. P., Odun-Ayo, I., Tatama, B. F., & Misra, S. (2020). Implementing a mobile voting system utilising blockchain technology and two-factor authentication in Nigeria. In 1st international conferenceon computing, communication, and cyber-security (pp. 857–872).

    Google Scholar 

  4. Awotunde, J. B., Ogundokun, R. O., Jimoh, R. G., Misra, S., & Aro, T. O. (2021). Machine learning algorithm for cryptocurrencies price prediction. In S. Misra & A. Kumar Tyagi (Eds.), Artificial intelligence for cyber security: Methods, issues, and possible horizons or opportunities (Studies in computational intelligence) (Vol. 972, pp. 421–447). Springer. https://doi.org/10.1007/978-3-030-72236-4_17

    Chapter  Google Scholar 

  5. Ben, A. A., & Belhajji, M. A. (2018). The Blockchain technology. International Journal of Hyperconnectivity and the Internet of Things, 1(2), 1–11.

    Google Scholar 

  6. Henry, R., Herzberg, A., & Kate, A. (2018). Blockchain access privacy: Challenges and directions. IEEE Security and Privacy, 16(4), 38–45. https://doi.org/10.1109/MSP.2018.3111245

    Article  Google Scholar 

  7. Brandão, A., Mamede, H. S., & Gonçalves, R. (2018). Systematic review of the literature, research on blockchain technology as support to the trust model proposed applied to smart places. Advances in Intelligent Systems and Computing, 745, 1163–1174.

    Article  Google Scholar 

  8. Alfa, A. A., Alhassan, J. K., Olaniyi, O. M., & Olalere, M. (2021). Blockchain technology in IoT systems: current trends., methodology, problems, applications, and future directions, 7(2), 115–143.

    Google Scholar 

  9. Ferrag, M. A., Derdour, M., Mukherjee, M., Derhab, A., Maglaras, L., & Janicke, H. (2018). Blockchain Technologies for the Internet of things: Research issues and challenges. IEEE Internet of Things Journal, 6(2), 2188–2204. https://doi.org/10.1109/JIOT.2018.2882794

    Article  Google Scholar 

  10. Huh, S., Cho, S., Kim, S.: Managing IoT devices using blockchain platform. International conference on advanced communication technology, pp. 464–467 (2017). https://doi.org/10.23919/ICACT.2017.7890132

  11. Olowu, M., Yinka-Banjo, C., Misra, S., & Florez, H. (2019). A secured private-cloud computing system. In H. Florez, M. Leon, J. M. Diaz-Nafria, & S. Belli (Eds.), ICAI 2019, CCIS (Vol. 1051, pp. 373–348). Springer. https://doi.org/10.1007/978-3-030-32475-9_27

    Chapter  Google Scholar 

  12. Alfa, A. A., Alhassan, J. K., Olaniyi, O. M., & Olalere, M. (2021). Sooner lightweight cryptosystem: Towards privacy preservation of resource-constrained. In S. Misra & B. Muhammad-Bello (Eds.), ICTA 2020, CCIS (Vol. 1350, pp. 415–429). Springer Nature. https://doi.org/10.1007/978-3-030-69143-1

    Chapter  Google Scholar 

  13. Ejaz, W., & Anpalagan, A. (2018). Blockchain Technology for Security and Privacy in internet of things. Internet Things Smart Cities. https://doi.org/10.1007/978-3-319-95037-2_5

  14. Misra, S. A. (2021). Step by step guide for choosing project topics and writing research papers in ICT related disciplines. In Communications in computer and information science (Vol. 1350, pp. 727–744). Springer.

    Google Scholar 

  15. Yang, Y., Yang, Y., Chen, J., & Liu, M. (2018). Application of blockchain in internet of things. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). LNCS, 11067, 73–82. https://doi.org/10.1007/978-3-030-00018-9_7

    Article  Google Scholar 

  16. Medhane, D. V., Sangaiah, A. K., Hossain, M. S., Muhammad, G., & Wang, J. (2020). Blockchain-enabled distributed secuity framework for next generation IoT: An edge-cloud and software defined network integrated approach. IEEE Internet of Things Journal, 7(7), 6143–6149. https://doi.org/10.1109/JIOT.2020.2977196

    Article  Google Scholar 

  17. Tasatanattakool, P., & Techapanupreeda, C. (2018). Blockchain: Challenges and applications. In 2018 international conference on information networking (pp. 473–475). IEEE. https://doi.org/10.1109/ICOIN.2018.8343163

    Chapter  Google Scholar 

  18. Higgins, S. (2015). IBM reveals proof of concept for blockchain-powered internet of things. https://www.coindesk.com/ibm-reveals-proof-concept-Blockchain-powered-internet-things/.

  19. Branco, F., Moreira, F., Martins, J., Au-Yong-Oliveira, M., & Goncalves, R. (2019). Conceptual approach for an extension to mushroom farm distributed process control system: IoT and Blockchain. In A. Rochas et al. (Eds.), WorldCIST’19 2019, AISC (Vol. 930, pp. 738–747). Springer Nature. https://doi.org/10.1007/978-3-030-16181-1_69

    Chapter  Google Scholar 

  20. IBM. (2015). Empowering the edge. https://www-935.ibm.com/services/multimedia/ GBE03662USEN.pdf.

  21. Atlam, H. F. (2018). Wills, G. B. (2018). Technical aspects of blockchain and IoT. Advances in computers, 115, 1–39. https://doi.org/10.1016/bs.adcom.2018.10.006

    Article  Google Scholar 

  22. Dinh, T. T. A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., & Wang, J. (2018). Untangling Blockchain: A data processing view of Blockchain systems. IEEE Transactions on Knowledge and Data Engineering, 30(7). https://doi.org/10.1109/TKDE.2017.2781227

  23. Lin, J., Shen, Z., Zhang, A., & Chai, Y. (2018). Blockchain and IoT based food traceability for smart agriculture. In 3rd international conference on crowd science and engineering (pp. 1–6). ACM.

    Google Scholar 

  24. Abayomi-Zannu, T. P., Odun-Ayo, I., Tatama, B. F., & Misra, S. (2020). Implementing a mobile voting system utilizing blockchain technology and two-factor authentication in Nigeria. In Proceedings of 1st International Conference on Computing, Communications, and Cyber-Security (IC4S 2019) (pp. 857–872). Springer.

    Google Scholar 

  25. Dorri, A., Roulin, C., Jurdak, R., & Kanhere, S. (2018). On the activity privacy of blockchain for IoT. ar**v preprint. http://arxiv.org/abs/1812.08970

  26. Ibáñez, L. D., Kieron, O., & Simperl, E. (2018). On Blockchains and the general data protection regulation. EU Blockchain Forum and Observatory, 1–13.

    Google Scholar 

  27. Sun, J., Zhong, Q., Kou, L., Wang, W., Da, Q., & Lin, Y. (2018). A lightweight multi-factor mobile user authentication scheme. In 2018 IEEE conference on computer communications workshops, INFOCOM WKSHPS (pp. 831–836). IEEE. https://doi.org/10.1109/INFCOMW.2018.8406952

    Chapter  Google Scholar 

  28. Buchanan, W. J., Li, S., & Asif, R. (2018). Lightweight cryptography methods. Journal of Cyber Security Technology, 1(3-4), 187--201. https://doi.org/10.1080/23742917.2017.1384917

  29. Halabi, J., & Artail, H. (2019). A lightweight synchronous cryptographic hash chain solution to securing the vehicle CAN bus. In 2018 IEEE International Multidisciplinary Conference on Engineering Technology, IMCET-2018 (pp. 1–6). https://doi.org/10.1109/IMCET.2018.8603057

    Chapter  Google Scholar 

  30. Gentry, C. (2009). A fully homomorphic encryption scheme. Ph.D. Dissertation. Stanford University.

    Google Scholar 

  31. Driscoll, K. (2018). Lightweight crypto for lightweight unmanned arial systems. In 2018 Integrated Communications, Navigation, Surveillance conference, ICNS 2018 (pp. 1–15). Honeywell. https://doi.org/10.1109/ICNSURV.2018.8384913

    Chapter  Google Scholar 

  32. Bahrami, S., & Naderi, M. (2010). Image encryption using a lightweight stream encryption algorithm. Advances in Multimedia, 2012, 1–8.

    Article  Google Scholar 

  33. Janakiraman, S., Sree, K. S., Manasa, V. L., Rajagopalan, S., Thenmozhi, K., & Amirtharajan, R. (2018). On the diffusion of lightweight image encryption in embedded hardware. 2018 international conference on computer communication and informatics. ICCCI, 2018, 1–6. https://doi.org/10.1109/ICCCI.2018.8441229

    Article  Google Scholar 

  34. Conti, M., Sandeep, K. E., Lal, C., & Ruj, S. (2018). A survey on security and privacy issues of bitcoin. IEEE Communications Surveys and Tutorials, 20(4), 3416–3452.

    Article  Google Scholar 

  35. Hassan, M. U., Rehmani, M. H., & Chen, J. (2019). Privacy preservation in blockchain based IoT systems: Integration issues, prospects, challenges, and future research directions. Future Generation Computer Systems, 97, 512–529. https://doi.org/10.1016/j.future.2019.02.060

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Ayegba Alfa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alfa, A.A., Alhassan, J.K., Olaniyi, O.M., Olalere, M. (2022). Enhanced Hash Value and Public Key Infrastructure Generations for Blockchains Using Sooner Lightweight Cryptography. In: Misra, S., Kumar Tyagi, A. (eds) Blockchain Applications in the Smart Era. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-89546-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89546-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89545-7

  • Online ISBN: 978-3-030-89546-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation