Pathogenesis of Viral Infections and Male Reproductive Health: An Evidence-Based Study

  • Chapter
  • First Online:
Oxidative Stress and Toxicity in Reproductive Biology and Medicine

Abstract

Viruses, being intracellular obligate parasites, can cause several congenital and sexually transmitted diseases. Depending on the site of infection, viruses can adopt various pathogenic mechanisms for their survival and to escape the host immune response. The male reproductive system is one of the attainable targets of many viruses including immunodeficiency virus (HIV), Zika virus (ZIKV), adenovirus, cytomegalovirus (CMV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and infection with such viruses may cause serious health issues. Leydig cells and seminiferous tubules are the prime sites of mammalian testis for viral infection. The azoospermic condition is a common symptom of viral infection, wherein the hypothalamic-pituitary-testicular (HPT) axis can be disrupted, leading to decreased levels of luteinizing hormone (LH). Furthermore, oxidative stress (OS) is a major contributing factor to viral infection-associated male infertility. The likelihood of direct and indirect infection, as well as sex-based variability in the vulnerability pattern to viral infections, has been observed. However, there appears to be a long-term impact of viral infection on male reproductive performance due to testicular tissue pathogenicity – a process that requires thorough investigation. The present study aimed to explore how the viruses affect the male reproductive system, including their distribution in tissues and body fluids, possible targets as well as the effects on the endocrine system. We used the major electronic databases such as MEDLINE and SCOPUS. Google Scholar was also consulted for additional literature search related to the topic. Obtained literatures were sorted based on the content. The articles that reported the pathogenesis of viruses on male reproductive health and were published in the English language were included in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roychoudhury S, Das A, Jha NK, Kesari KK, Roychoudhury S, Jha SK, Kosgi R, Choudhury AP, Lukac N, Madhu NR, Kumar D, Slama P. Viral pathogenesis of SARS-CoV-2 infection and male reproductive health. Open Biol. 2021;11(1):200347. https://doi.org/10.1098/rsob.200347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roychoudhury S, Das A, Sengupta P, Dutta S, Roychoudhury S, Choudhury AP, Ahmed A, Bhattacharjee S, Slama P. Viral pandemics of the last four decades: pathophysiology, health impacts and perspectives. Int J Environ Res Public Health. 2020;17(24):9411. https://doi.org/10.3390/ijerph17249411.

    Article  CAS  PubMed Central  Google Scholar 

  3. Dutta S, Sengupta P. SARS-CoV-2 and male infertility: possible multifaceted pathology. Reprod Sci (Thousand Oaks, Calif.). 2021;28(1):23–6. https://doi.org/10.1007/s43032-020-00261-z.

    Article  CAS  Google Scholar 

  4. Stanley KE, Thomas E, Leaver M, Wells D. Coronavirus disease (COVID-19) and fertility: viral ost entry protein expression in male and female reproductive tissues. Fertil Steril. 2020;114:33–43. https://doi.org/10.1016/j.fertnstert.2020.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod. 2006;74(2):410–6.

    Article  CAS  Google Scholar 

  6. Pan F, **ao X, Guo J, Song Y, Li H, Patel DP, et al. No evidence of SARS-CoV-2 in semen of males recovering from COVID-19. Fertil Steril. 2020;113:1135–9. https://doi.org/10.1016/j.fertnstert.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nora H, Philippos E, Marcel A, Cornelius D, Dunja B-B, Ortwin A, et al. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil Steril. 2020; https://doi.org/10.1016/j.fertnstert.2020.05.028.

  8. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80. https://doi.org/10.1016/j.cell.2020.02.052.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Napoli RD. Features, evaluation and treatment coronavirus (COVID-19). In: Statpearls [Internet]. Treasure Island: StatPearls Publishing; 2020. p. 1–16.

    Google Scholar 

  10. Roychoudhury S, Das A, Sengupta P, Dutta S, Roychoudhury S, Kolesarova A, Hleba L, Massanyi P, Salma P. Viral pandemics of twenty-first century. J Microbiol Biotechnol Food Sci. 2021;11(1):711–6. https://doi.org/10.015414/jmbfs.2021.10.4

    Google Scholar 

  11. Bloom DE, Cadarette D. Infectious disease threats in the twenty-first century: strengthening the global response. Front Immunol. 2019;10:549.

    Article  Google Scholar 

  12. Alex P, Salam PWH. The breadth of viruses in human semen. J Med Microbiol. 2000;49(10):937–40. https://doi.org/10.1099/0022-1317-49-10-937.

    Article  Google Scholar 

  13. Corona G, et al. SARS-CoV-2 infection, male fertility and sperm cryopreservation: a position statement of the Italian Society of Andrology and Sexual Medicine (SIAMS). J Endocrinol Investig. 2020;43:1153–7. https://doi.org/10.1007/s40618-020-01290-w.

    Article  CAS  Google Scholar 

  14. Dejucq N, Jégou B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev. 2001;65(2):208–31. https://doi.org/10.1128/mmbr.65.2.208-231.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. La Vignera S, Vicari E, Condorelli RA, D’Agata R, Calogero AE. Male accessory gland infection and sperm parameters (review). Int J Androl. 2011;34(5PART 2) https://doi.org/10.1111/j.1365-2605.2011.01200.x.

  16. Weidner W, Krause W, Ludwig M. Relevance of male accessory gland infection for subsequent fertility with special focus on prostatitis. Hum Reprod Update. 1999;5(5):421–32. https://doi.org/10.1093/humupd/5.5.421.

    Article  CAS  PubMed  Google Scholar 

  17. Bhushan S, Schuppe HC, Fijak M, Meinhardt A. Testicular infection: microorganisms, clinical implications and host-pathogen interaction. J Reprod Immunol. 2009;83(1–2):164–7. https://doi.org/10.1016/j.jri.2009.07.007.

    Article  CAS  PubMed  Google Scholar 

  18. Sarkar D. A Review on the Emerging Epidemic of Novel Coronavirus (nCoV- SARS CoV-2): Present Combating Strategies. Int J Pharm Sci. 2021;12(2):33–41. https://doi.org/10.22376/ijpbs.2021.12.2.b33-41.

    Article  CAS  Google Scholar 

  19. Cardona-Maya W, Velilla PA, Montoya CJ, Cadavid Á, Rugeles MT. In vitro human immunodeficiency virus and sperm cell interaction mediated by the mannose receptor. J Reprod Immunol. 2011;92(1–2):1–7. https://doi.org/10.1016/j.jri.2011.09.002.

    Article  CAS  PubMed  Google Scholar 

  20. Dutta S, Thakare YR, Kshirsagar A, Sarkar D. A review on host genetic susceptibility to SARS CoV-2 related pneumonia. Int J Pharma Sci. 2021;12(2):b42–9. https://doi.org/10.22376/ijpbs.2021.12.2b42-49.

    Article  CAS  Google Scholar 

  21. Nickel JC. Prostatitis and related conditions, orchitis, and epididymitis. In: Wein AJ, editor. Campbell–Walsh urology. 10th ed. Philadelphia: Elsevier Saunders; 2011. [chapter 11] [Google Scholar].

    Google Scholar 

  22. Wald A, Matson P, Ryncarz A, Corey L. Detection of herpes simplex virus DNA in semen of men with genital HSV-2 infection. Sex Transm Dis. 1999;26:1–3. [PubMed] [Google Scholar]

    Article  CAS  Google Scholar 

  23. Salam AP, Horby PW. The breadth of viruses in human semen. Emerg Infect Dis. 2017;23:1922–4.

    Article  Google Scholar 

  24. Dejucq-Rainsford N, Jegou B. Viruses in semen and male genital tissues—consequences for the reproductive system and therapeutic perspectives. Curr Pharm Des. 2004;10:557–75.

    Article  CAS  Google Scholar 

  25. Murray K, Walker C, Herrington E, Lewis JA, McCormick J, Beasley DWC, Tesh RB, Fisher-Hoch S. Persistent infection with West Nile virus years after initial infection. J Infect Dis. 2010;201:2–4.

    Article  CAS  Google Scholar 

  26. Bandeira AC, Campos GS, Rocha VF, Souza BS, Soares MB, Oliveira AA, Abreu YC, Menezes GS, Sardi S. Prolonged shedding of chikungunya virus in semen and urine: a new perspective for diagnosis and implications for transmission. IDCases. 2016;6:100–3.

    Article  Google Scholar 

  27. Bornstein SR, Rutkowski H, Vrezas I. Cytokines and steroidogenesis. Mol Cell Endocrinol. 2004;215(1–2):135–41. https://doi.org/10.1016/j.mce.2003.11.022.

    Article  CAS  PubMed  Google Scholar 

  28. Wald A, Matson P, Ryncarz A, Corey L. Detection of herpes simplex virus DNA in semen of men with genital HSV-2 infection. Sex Transm Dis. 1999;26(1):1–3. https://doi.org/10.1097/00007435-199901000-00001.

    Article  CAS  PubMed  Google Scholar 

  29. Dejucq N, Jégou B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev. 2001;65:208–31.

    Article  CAS  Google Scholar 

  30. Klimova RR, Chichev EV, Naumenko VA, et al. Herpes simplex virus and cytomegalovirus in male ejaculate: herpes simplex virus is more frequently encountered in idiopathic infertility and correlates with the reduction in sperm parameters. Vopr Virusol. 2010;55:27–31. [PubMed] [Google Scholar]

    CAS  PubMed  Google Scholar 

  31. Mate SE, Kugelman JR, Nyenswah TG, Ladner JT, Wiley MR, Cordier-Lassalle T, Christie A, Schroth GP, Gross SM, Davies-Wayne GJ, et al. Molecular evidence of sexual transmission of Ebola virus. N Engl J Med. 2015;373:2448–54.

    Article  CAS  Google Scholar 

  32. Deen GF, Broutet N, Xu W, Knust B, Sesay FR, McDonald SLR, Ervin E, Marrinan JE, Gaillard P, Habib N, et al. Ebola RNA persistence in semen of Ebola virus disease survivors—preliminary report. N Engl J Med. 2017;377:1428–37.

    Article  CAS  Google Scholar 

  33. Dejucq N, Jégou B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev. 2001;65(2):208–31. https://doi.org/10.1128/MMBR.65.2.208-231.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Casella R, Leibundgut B, Lehmann K, Gasser TC. Mumps orchitis: report of a mini-epidemic. J Urol. 1997;158(6):2158–61. https://doi.org/10.1016/S0022-5347(01)68186-2.

    Article  CAS  PubMed  Google Scholar 

  35. Lafferty WE, Downey L, Celum C, Wald A. Herpes simplex virus type 1 as a cause of genital herpes: impact on surveillance and prevention. J Infect Dis. 2000;181:1454–7. [PubMed] [Google Scholar]

    Article  CAS  Google Scholar 

  36. Mikuz G, Damjanov I. Inflammation of the testis, epididymis, peritesticular membranes, and scrotum. Pathol Annu. 1982;17:101–28. [PubMed] [Google Scholar]

    PubMed  Google Scholar 

  37. Kapranos N, Petrakou E, Anastasiadou C, Kotronias D. Detection of herpes simplex virus, cytomegalovirus, and Epstein-Barr virus in the semen of men attending an infertility clinic. Fertil Steril. 2003;79(Suppl 3):1566–70. https://doi.org/10.1016/s0015-0282(03)00370-4.

    Article  PubMed  Google Scholar 

  38. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM. Potential sexual transmission of Zika virus. Emerg Infect Dis. 2015;21(2):359–61. https://doi.org/10.3201/eid2102.141363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schuppe HC, Pilatz A, Hossain H, Diemer T, Wagenlehner F, Weidner W. Urogenital infection as a risk factor for male infertility. Dtsch Arztebl Int. 2017;114(19):339–46. https://doi.org/10.3238/arztebl.2017.0339.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Apari P, de Sousa JD, Muller V. Why sexually transmitted infections tend to cause infertility: an evolutionary hypothesis. PLoS Path. 2014;10(8):e1004111. https://doi.org/10.1371/journal.ppat.1004111Atkinson.

    Article  Google Scholar 

  41. Nguyen O, Sheppeard V, Douglas MW, Tu E, Rawlinson W. Acute hepatitis C infection with evidence of heterosexual transmission. J Clin Virol. 2010;49(1):65–8. https://doi.org/10.1016/j.jcv.2010.06.008.

    Article  PubMed  Google Scholar 

  42. Sánchez-Montalvá A, Pou D, Sulleiro E, Salvador F, Bocanegra C, Treviño B, Rando A, Serre N, Pumarola T, Almirante B, et al. Zika virus dynamics in body fluids and risk of sexual transmission in a non-endemic area. Tropical Med Int Health. 2018;23:92–100.

    Article  Google Scholar 

  43. Dejucq N, Jegou B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev. 2001;65(2):208–31. first and second pages, table of contents. https://doi.org/10.1128/MMBR.65.2.208-231.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harrower J, Kiedrzynski T, Baker S, Upton A, Rahnama F, Sherwood J, Huang QS, Todd A, Pulford D. Sexual transmission of Zika virus and persistence in semen, New Zealand, 2016. Emerg Infect Dis. 2016;22:1855–7.

    Article  Google Scholar 

  45. Turmel JM, Abgueguen P, Hubert B, Vandamme YM, Maquart M, Le Guillou-Guillemette H, Leparc-Goffart I. Late sexual transmission of Zika virus related to persistence in the semen. Lancet. 2016;387:2501.

    Article  Google Scholar 

  46. Couto-Lima D, Madec Y, Bersot MI, Campos SS, Motta MA, Santos FBD, Vazeille M, Vasconcelos PFDC, Lourenço-de-Oliveira R, Failloux AB. Potential risk of re-emergence of urban transmission of yellow fever virus in Brazil facilitated by competent Aedes populations. Sci Rep. 2017;7:4848.

    Article  Google Scholar 

  47. Barbosa CM, Di Paola N, Cunha MP, Rodrigues-Jesus MJ, Araujo DB, Silveira VB, Leal FB, Mesquita FS, Botosso VF, Zanotto PMA, et al. Yellow fever virus RNA in urine and semen of convalescent patient. Brazil Emerg Infect Dis. 2018;24:176–8.

    Article  Google Scholar 

  48. Venturi G, Zammarchi L, Fortuna C, Remoli ME, Benedetti E, Fiorentini C, Trotta M, Rizzo C, Mantella A, Rezza G, et al. An autochthonous case of Zika due to possible sexual transmission, Florence, Italy, 2014. Euro Surveill. 2016;21:30148.

    PubMed  Google Scholar 

  49. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM. Potential sexual transmission of Zika virus. Emerg Infect Dis. 2015;21:2013–5.

    Article  Google Scholar 

  50. Mansuy JM, Dutertre M, Mengelle C, Fourcade C, Marchou B, Delobel P, Izopet J, Martin-Blondel G. Zika virus: high infectious viral load in semen, a new sexually transmitted pathogen? Lancet Infect Dis. 2016;16:405.

    Article  Google Scholar 

  51. Nguyen PV, Kafka JK, Ferreira VH, Roth K, Kaushic C. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection. Cell Mol Immunol. 2014;11:410–27.

    Article  CAS  Google Scholar 

  52. Malolina EA, Kulibin AY, Naumenko VA, Gushchina EA, Zavalishina LE, Kushch AA. Herpes simplex virus inoculation in murine rete testis results in irreversible testicular damage. Int J Exp Pathol. 2014;95(2):120–30. Published online 2014 Feb 23. https://doi.org/10.1111/iep.12071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Musso D, Richard V, Teissier A, Stone M, Lanteri MC, Latoni G, Alsina J, Reik R, Busch MP. Detection of Zika virus RNA in semen of asymptomatic blood donors. Clin Microbio Infect. 2017;23:1001.e1–3.

    Article  CAS  Google Scholar 

  54. Foresta C, Pizzol D, Moretti A, Barzon L, Palu G, Garolla A. Clinical and prognostic significance of human papillomavirus DNA in the sperm or exfoliated cells of infertile patients and subjects with risk factors. Fertil Steril. 2010;94(5):1723–7.

    Article  CAS  Google Scholar 

  55. Prisant N, Bujan L, Benichou H, Hayot P-H, Pavili L, Lurel S, Herrmann C, Janky E, Joguet G. Zika virus in the female genital tract. Lancet Infect Dis. 2016;16:1000–1.

    Article  Google Scholar 

  56. Davidson A, Slavinski S, Komoto K, Rakeman J, Weiss D. Suspected female-to-male sexual transmission of Zika virus—new York City, 2016. MMWR Morb Mortal Wkly Rep. 2016;65:716–7.

    Article  Google Scholar 

  57. Foresta C, Patassini C, Bertoldo A, Menegazzo M, Francavilla F, Barzon L, Ferlin A. Mechanism of human papillomavirus binding to human spermatozoa and fertilizing ability of infected spermatozoa. PLoS One. 2011;6(3):e15036. https://doi.org/10.1371/journal.pone.0015036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gimenes F, Souza RP, Bento JC, Teixeira JJ, Maria-Engler SS, Bonini MG, Consolaro ME. Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol. 2014;11(12):672–87. https://doi.org/10.1038/nrurol.2014.285.

    Article  PubMed  Google Scholar 

  59. Laprise C, Trottier H, Monnier P, Coutlee F, Mayrand MH. Prevalence of human papillomaviruses in semen: a systematic review and meta-analysis. Hum Reprod. 2014;29(4):640–51. https://doi.org/10.1093/humrep/det453.

    Article  PubMed  Google Scholar 

  60. Croxson TS, Chapman WE, Miller LK, Levit CD, Senie R, Zumoff B. Changes in the hypothalamic-pituitary-gonadal axis in human immunodeficiency virus-infected homosexual men. J Clin Endocrinol Metab. 1989;68(2):317–21. https://doi.org/10.1210/jcem-68-2-317.

    Article  CAS  PubMed  Google Scholar 

  61. Poretsky L, Can S, Zumoff B. Testicular dysfunction in human immunodeficiency virus-infected men. Metabolism. 1995;44(7):946–53. https://doi.org/10.1016/0026-0495(95)90250-3.

    Article  CAS  PubMed  Google Scholar 

  62. Matheron S, D’Ortenzio E, Leparc-Goffart I, Hubert B, de Lamballerie X, Yazdanpanah Y. Long-lasting persistence of Zika virus in semen. Clin Infect Dis. 2016;63:ciw509.

    Article  Google Scholar 

  63. Lai YM, Lee JF, Huang HY, Soong YK, Yang FP, Pao CC. The effect of human papillomavirus infection on sperm cell motility. Fertil Steril. 1997;67(6):1152–5. https://doi.org/10.1016/S0015-0282(97)81454-9.

    Article  CAS  PubMed  Google Scholar 

  64. Gimenes F, Souza RP, Bento JC, Teixeira JJ, Maria-Engler SS, Bonini MG, Consolaro ME. Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol. 2014;11(12):672–87. https://doi.org/10.1038/nrurol.2014.285.

    Article  PubMed  Google Scholar 

  65. Hills SL, Russell K, Hennessey M, Williams C, Oster AM, Fischer M, Mead P. Transmission of Zika virus through sexual contact with travelers to areas of ongoing transmission—continental United States, 2016. MMWR Morb Mortal Wkly Rep. 2016;65:215–6.

    Article  Google Scholar 

  66. Gimenes F, Souza RP, Bento JC, Teixeira JJ, Maria-Engler SS, Bonini MG, Consolaro ME. Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol. 2014;11(12):672–87. https://doi.org/10.1038/nrurol.2014.285.

    Article  PubMed  Google Scholar 

  67. Huang JM, Huang TH, Qiu HY, Fang XW, Zhuang TG, Qiu JW. Studies on the integration of hepatitis B virus DNA sequence in human sperm chromosomes. Asian J Androl. 2002;4(3):209–12.

    CAS  PubMed  Google Scholar 

  68. Jenabian MA, Costiniuk CT, Mehraj V, Ghazawi FM, Fromentin R, Brousseau J, Brassard P, Bélanger M, Ancuta P, Bendayan R, et al. Immune tolerance properties of the testicular tissue as a viral sanctuary site in ART-treated HIV-infected adults. AIDS. 2016;30:2777–86.

    Article  CAS  Google Scholar 

  69. La Vignera S, Condorelli RA, Vicari E, D'Agata R, Calogero AE. Sperm DNA damage in patients with chronic viral C hepatitis. Eur J Intern Med. 2012;23(1):e19–24. https://doi.org/10.1016/j.ejim.2011.08.011.

    Article  CAS  PubMed  Google Scholar 

  70. Dutta S, Sengupta P. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: can testicular-adrenal crosstalk be ruled-out? J Basic Clin Physiol. 2020;31:20200205. https://doi.org/10.1515/jbcpp-2020-0205.

    Article  CAS  Google Scholar 

  71. Citil Dogan A, Wayne S, Bauer S, Ogunyemi D, Kulkharni SK, Maulik D, Carpenter CF, Bahado-Singh RO. The Zika virus and pregnancy: evidence, management, and prevention. J Matern Neonatal Med. 2017;30:386–96.

    Article  Google Scholar 

  72. Yeniyol CO, Sorguc S, Minareci S, Ayder AR. Role of interferon-alpha-2B in prevention of testicular atrophy with unilateral mumps orchitis. Urology. 2000;55(6):931–3. https://doi.org/10.1016/S0090-4295(00)00491-X.

    Article  CAS  PubMed  Google Scholar 

  73. Klein SL, Dhakal S, Ursin RL, Deshpande S, Sandberg K, Mauvais-Jarvis F. Biological sex impacts COVID-19 outcomes. PLoS Pathog. 2020;16:e1008570.

    Article  CAS  Google Scholar 

  74. Theas MS, Rival C, Jarazo-Dietrich S, Jacobo P, Guazzone VA, Lustig L. Tumour necrosis factor-alpha released by testicular macrophages induces apoptosis of germ cells in autoimmune orchitis. Hum Reprod. 2008;23(8):1865–72.

    Article  CAS  Google Scholar 

  75. Alahmar AT. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci. 2019;12:4–18. https://doi.org/10.4103/jhrs.JHRS_150_18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li N, Wang T, Han D. Structural, cellular and molecular aspects of immune privilege in the testis. Front Immunol. 2012;3:152.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Loveland KL, Klein B, Pueschl D, Indumathy S, Bergmann M, Loveland BE, Hedger MP, Schuppe H-C. Cytokines in male fertility and reproductive pathologies: immunoregulation and beyond. Front Endocrinol (Lausanne). 2017;8:307.

    Article  Google Scholar 

  78. Mladinich MC, Schwedes J, Mackow ER. Zika virus persistently infects and is basolaterally released from primary human brain microvascular endothelial cells. mBio. 2017;8:e00952-17.

    Article  Google Scholar 

  79. Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells. 2020;9:920.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, D. et al. (2022). Pathogenesis of Viral Infections and Male Reproductive Health: An Evidence-Based Study. In: Kesari, K.K., Roychoudhury, S. (eds) Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, vol 1358. Springer, Cham. https://doi.org/10.1007/978-3-030-89340-8_14

Download citation

Publish with us

Policies and ethics

Navigation