Solid-State Techniques for Improving Solubility

  • Chapter
  • First Online:
Formulating Poorly Water Soluble Drugs

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 50))

  • 1533 Accesses

Abstract

Poor aqueous solubility of a drug substance can often be attributed to strong intermolecular forces within its crystal lattice, which, in turn, prevent molecules from esca** in solution. Through the use of solid-state chemistry, it is possible to modify the crystal structure in such a way that mitigates intermolecular forces, thus improving aqueous solubility and increasing rates of dissolution. Solid-state techniques utilized for solubility enhancement include the formation of salts, polymorphic or amorphous forms, and cocrystals. Each technique has specific advantages and, in some cases, disadvantages that may prevent its successful use. The purpose of this chapter is to describe each of the methods, allowing the reader to gain an understanding of solid-state modifications available for solubility enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramov YA, Loschen C, Klamt A. Rational coformer or solvent selection for pharmaceutical cocrystallization or desolvation. J Pharm Sci. 2012;101:3687–97.

    Article  CAS  PubMed  Google Scholar 

  • Aguiar AJ, Zelmer JE. Dissolution behavior of polymorphs of chloramphenicol palmitate and mefenamic acid. J Pharm Sci. 1969;58:983–7.

    Article  CAS  PubMed  Google Scholar 

  • Aguiar AJ, Krc J, Kinkel AW, Samyn JC. Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate. J Pharm Sci. 1967;56:847–53.

    Article  CAS  PubMed  Google Scholar 

  • Alhalaweh A, Alzghoul A, Kaialy W, Mahlin D, Bergström CAS. Computational predictions of glass-forming ability and crystallization tendency of drug molecules. Mol Pharm. 2014;11:3123–32.

    Article  CAS  PubMed  Google Scholar 

  • Alhalaweh A, Alzghoul A, Mahlin D, Bergström CAS. Physical stability of drugs after storage above and below the glass transition temperature: relationship to glass-forming ability. Int J Pharm. 2015;495:312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allesø M, van den Berg F, Cornett C, Jørgensen FS, Halling Sørensen B, de Diego HL, Hovgaard L, Aaltonen J, Rantanen J. Solvent diversity in polymorph screening. J Pharm Sci. 2008;97:2145–59.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez AJ, Singh A, Myerson AS. Polymorph screening: comparing a semi-automated approach with a high throughput method. Cryst Growth Des. 2009;9:4181–8.

    Article  CAS  Google Scholar 

  • Askin S, Cockcroft JK, Price LS, Gonçalves AD, Zhao M, Tocher DA, Williams GR, Gaisford S, Craig DQM. Olanzapine Form IV: discovery of a new polymorphic form enabled by computed crystal energy landscapes. Cryst Growth Des. 2019;19:2751–7.

    Article  CAS  Google Scholar 

  • Askin S, Gonçalves AD, Zhao M, Williams GR, Gaisford S, Craig DQM. A simultaneous differential scanning calorimetry–X-ray diffraction study of olanzapine crystallization from amorphous solid dispersions. Mol Pharm. 2020;17:4364–74.

    Article  CAS  PubMed  Google Scholar 

  • Bag PP, Reddy CM. Screening and selective preparation of polymorphs by fast evaporation method: a case study of aspirin, anthranilic acid, and niflumic acid. Cryst Growth Des. 2012;12:2740–3.

    Article  CAS  Google Scholar 

  • Bag PP, Patni M, Malla Reddy C. A kinetically controlled crystallization process for identifying new cocrystal forms: fast evaporation of solvent from solutions to dryness. Cryst Eng Comm. 2011;13:5650–2.

    Article  CAS  Google Scholar 

  • Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99:3787–806.

    Article  CAS  PubMed  Google Scholar 

  • Bastin RJ, Bowker MJ, Slater BJ. Salt selection and optimisation procedures for pharmaceutical new chemical entities. Org Process Res Dev. 2000;4:427–35.

    Article  CAS  Google Scholar 

  • Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J. Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res. 2001;18:859–66.

    Article  CAS  PubMed  Google Scholar 

  • Bechtloff B, Nordhoff S, Ulrich J. Pseudopolymorphs in industrial use. Cryst Res Tech. 2001;36:1315–28.

    Article  CAS  Google Scholar 

  • Berge SM, Bighley LD, Monkhouse DC. Pharmaceutical salts. J Pharm Sci. 1977;66:1–19.

    Article  CAS  PubMed  Google Scholar 

  • Berry DJ, Steed JW. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv Drug Deliv Rev. 2017;117:3–24.

    Article  CAS  PubMed  Google Scholar 

  • Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Horton PN. Applying hot-stage microscopy to cocrystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des. 2008;8:1697–712.

    Article  CAS  Google Scholar 

  • Bhardwaj RM, Price LS, Price SL, Reutzel-Edens SM, Miller GJ, Oswald IDH, Johnston BF, Florence AJ. Exploring the experimental and computed crystal energy landscape of olanzapine. Cryst Growth Des. 2013;13:1602–17.

    Article  CAS  Google Scholar 

  • Bis JA, Vishweshwar P, Weyna D, Zaworotko MJ. Hierarchy of supramolecular synthons: persistent hydroxyl pyridine hydrogen bonds in cocrystals that contain a cyano acceptor. Mol Pharm. 2007;4:401–16.

    Article  CAS  PubMed  Google Scholar 

  • Blaabjerg LI, Lindenberg E, Löbmann K, Grohganz H, Rades T. Glass forming ability of amorphous drugs investigated by continuous cooling and isothermal transformation. Mol Pharm. 2016;13:3318–25.

    Article  CAS  PubMed  Google Scholar 

  • Black SN, Collier EA, Davey RJ, Roberts RJ. Structure, solubility, screening, and synthesis of molecular salts. J Pharm Sci. 2007;96:1053–68.

    Article  CAS  PubMed  Google Scholar 

  • Blagden N, Md M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59:617–30.

    Article  CAS  PubMed  Google Scholar 

  • Bowker MJ, Stahl PH. Preparation of water soluble compounds through salt formation. In: Wermuth CG, editor. The practice of medicinal chemistry. New York: Academic; 2008. p. 749.

    Google Scholar 

  • Byrn SR, Pfeiffer RR, Stowell JG. Drugs as molecular solids. Solid-state chemistry of drugs. West Lafayette: SSCI; 1999a. p. 143–241.

    Google Scholar 

  • Byrn SR, Pfeiffer RR, Stowell JG. Polymorphs. Solid-state chemistry of drugs. West Lafayette: SSCI; 1999b. p. 143–241.

    Google Scholar 

  • Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J, Henry R, Spanton S, Dziki W, Porter W, Quick J, Bauer P, Donaubauer J, Narayanan BA, Soldani M, Riley D, McFarland K. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev. 2000;4:413–7.

    Article  CAS  Google Scholar 

  • Chiarella RA, Davey RJ, Peterson ML. Making Cocrystals the utility of ternary phase diagrams. Cryst Growth Des. 2007;7:1223–6.

    Article  CAS  Google Scholar 

  • Childs SL, Rodriguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrstEngComm. 2008;10:856–64.

    Article  CAS  Google Scholar 

  • Corrigan OI. Salt forms: pharmaceutical aspects. In: Swarbrick J, editor. Encyclopedia of pharmaceutical technology. New York: Informa Healthcare; 2006. p. 3177–87.

    Google Scholar 

  • Crisp HA, Clayton JC. Increased absorption via the gastrointestinal tract, allowing for oral or rectal administration, 1985. US Patent 4,562,181

    Google Scholar 

  • Crisp HA, Clayton JC Elliott LG, Wilson EM. Preparation of a highly pure, substantially amorphous form of cefuroxime axetil, 1989. US Patent 4,820,833

    Google Scholar 

  • Crisp HA, Clayton JC, Elliott LG, Wilson EM. Process for preparing cefuroxime axetil, 1991. US Patent 5,013,833

    Google Scholar 

  • Dannenfelser R-M, He H, Joshi Y, Bateman S, Serajuddin ATM. Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycol–polysorbate 80 solid dispersion carrier system. J Pharm Sci. 2004;93:1165–75.

    Article  CAS  PubMed  Google Scholar 

  • Delori A, Friscic T, Jones W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrstEngComm. 2012;14:2350–62.

    Article  CAS  Google Scholar 

  • Eddleston MD, Patel B, Day GM, Jones W. Cocrystallization by freeze-drying: preparation of novel multicomponent crystal forms. Cryst Growth Des. 2013;13:4599–606.

    Article  CAS  Google Scholar 

  • Elder DP, Delaney E, Teasdale A, Eyley S, Reif VD, Jacq K, Facchine KL, Oestrich RS, Sandra P, David F. The utility of sulfonate salts in drug development. J Pharm Sci. 2010;99:2948–61.

    Article  CAS  PubMed  Google Scholar 

  • Engel GL, Farid NA, Faul MM, Richardson LA, Winneroski LL. Salt form selection and characterization of LY333531 mesylate monohydrate. Int J Pharm. 2000;198:239–47.

    Article  CAS  PubMed  Google Scholar 

  • Etter MC, Adsmond DA. The use of cocrystallization as a method of studying hydrogen bond preferences of 2-aminopyrimidine. J Chem Soc Chem Commun. 1990:589–91.

    Google Scholar 

  • Etter MC, Reutzel SM, Choo CG. Self-organization of adenine and thymine in the solid state. J Am Chem Soc. 1993;115:4411–2.

    Article  CAS  Google Scholar 

  • Fábián L. Cambridge structural database analysis of molecular complementarity in cocrystals. Cryst Growth Des. 2009;9:1436–43.

    Article  CAS  Google Scholar 

  • Fleischman SG, Kuduva SS, McMahon JA, Moulton B, Bailey Walsh RD, Rodríguez-Hornedo N, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst Growth Des. 2003;3:909–19.

    Article  CAS  Google Scholar 

  • Gardner CR, Almarsson O, Chen H, Morissette S, Peterson M, Zhang Z, Wang S, Lemmo A, Gonzalez-Zugasti J, Monagle J, Marchionna J, Ellis S, McNulty C, Johnson A, Levinson D, Cima M. Application of high throughput technologies to drug substance and drug product development. Comput Chem Eng. 2004;28:943–53.

    Article  CAS  Google Scholar 

  • Good DJ, Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9:2252–64.

    Article  CAS  Google Scholar 

  • Gould PL. Salt selection for basic drugs. Int J Pharm. 1986;33:201–17.

    Article  CAS  Google Scholar 

  • Grant DJW, Higuchi T. Solubility, intermolecular forces, and thermodynamics. In: Saunders WH, editor. Solubility behavior of organic compounds, vol. XXI. New York: Wiley-Interscience; 1990. p. 12–88.

    Google Scholar 

  • Gross TD, Schaab K, Ouellette M, Zook S, Reddy JP, Shurtleff A, Sacaan AI, Alebic-Kolbah T, Bozigian H. An approach to early-phase salt selection: Application to NBI-75043. Org Process Res Dev. 2007;11:365–77.

    Article  CAS  Google Scholar 

  • Grossjohann C, Serrano DR, Paluch KJ, O’Connell P, Vella-Zarb L, Manesiotis P, McCabe T, Tajber L, Corrigan OI, Healy AM. Polymorphism in sulfadimidine/4-aminosalicylic acid cocrystals: solid-state characterization and physicochemical properties. J Pharm Sci. 2015;104:1385–98.

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Chawla G, Bansal AK. Physical stability and solubility advantage from amorphous celecoxib: the role of thermodynamic quantities and molecular mobility. Mol Pharm. 2004;1:406–13.

    Article  CAS  PubMed  Google Scholar 

  • Haleblian J, McCrone W. Pharmaceutical applications of polymorphism. J Pharm Sci. 1969;58:911–29.

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC. Disordered drug delivery: destiny, dynamics and the Deborah number. J Pharm Pharmacol. 2002;54:737–46.

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Parks M. What is the true solubility advantage of the different forms? Pharm Res. 2000;17:397–404.

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12:799–806.

    Article  CAS  PubMed  Google Scholar 

  • Hickey MB, Peterson ML, Scoppettuolo LA, Morrisette SL, Vetter A, Guzmán H, Remenar JF, Zhang Z, Tawa MD, Haley S, Zaworotko MJ, Almarsson Ö. Performance comparison of a cocrystal of carbamazepine with marketed product. Eur J Pharm Biopharm. 2007;67:112–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang L-F, Tong W-Q. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev. 2004;56:321–34.

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Yalkowsky SH. Estimation of the aqueous solubility I: Application to organic nonelectrolytes. J Pharm Sci. 2001;90:234–52.

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Yang G, Machatha SG, Yalkowsky SH. Estimation of the aqueous solubility of weak electrolytes. Int J Pharm. 2006;319:169–71.

    Article  CAS  PubMed  Google Scholar 

  • James SL, Adams CJ, Bolm C, Braga D, Collier P, Friscic T. Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev. 2012;41:413–47.

    Article  CAS  PubMed  Google Scholar 

  • Karamertzanis PG, Kazantsev AV, Issa N, Welch GWA, Adjiman CS, Pantelides CC. Can the formation of pharmaceutical cocrystals be computationally predicted? 2. Crystal structure prediction. J Chem Theory & Comput. 2009;5:1432–48.

    Article  CAS  Google Scholar 

  • Kim J-S, Kim M-S, Park HJ, ** S-J, Lee S, Hwang S-J. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm. 2008;359:211–9.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Ito S, Itai S, Yamamoto K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int J Pharm. 2000;193:137–46.

    Article  CAS  PubMed  Google Scholar 

  • Krishna GR, Shi L, Bag PP, Sun CC, Reddy CM. Correlation among crystal structure, mechanical behavior, and tabletability in the cocrystals of vanillin isomers. Cryst Growth Des. 2015;15:1827–32.

    Article  CAS  Google Scholar 

  • Kumar L, Amin A, Bansal AK. An overview of automated systems relevant in pharmaceutical salt screening. Drug Discov Today. 2007;12:1046–53.

    Article  CAS  PubMed  Google Scholar 

  • Kuroda R, Imai Y, Tajima N. Generation of a cocrystal phase with novel coloristic properties via solid state grinding procedures. Chem Commun. 2002:2848–9.

    Google Scholar 

  • Lang M, Kampf JW, Matzger AJ. Form IV of carbamazepine. J Pharm Sci. 2002;91:1186–90.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Hoff C. Large-scale aspects of salt formation: processing of intermediates and final products. In: Stahl PH, Wermuth CG, editors. Pharmaceutical salts: properties, selection, and use. New York: Wiley-VCH; 2002. p. 191–220.

    Google Scholar 

  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wong S, Sethia S, Almoazen H, Joshi YM, Serajuddin ATM. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm Res. 2005;22:628–35.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yu T, Tian Y, McCoy CP, Jones DS, Andrews GP. Mechanochemical synthesis of pharmaceutical cocrystal suspensions via hot melt extrusion: feasibility studies and physicochemical characterization. Mol Pharm. 2016;13:3054–68.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yu T, Tian Y, Lagan C, Jones DS, Andrews GP. Mechanochemical synthesis of pharmaceutical cocrystal suspensions via hot melt extrusion: enhancing cocrystal yield. Mol Pharm. 2018;15:3741–54.

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA. Poor aqueous solubility: industry wide problem in drug discovery. Am Pharmaceut Rev. 2002;5:82–5.

    Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–25.

    Article  CAS  PubMed  Google Scholar 

  • Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrstEngComm. 2008;10:665–8.

    Article  CAS  Google Scholar 

  • Luo H, Hao X, Gong Y, Zhou J, He X, Li J. Rational crystal polymorph design of olanzapine. Cryst Growth Des. 2019;19:2388–95.

    Article  CAS  Google Scholar 

  • Mao C, Pinal R, Morris KR. A quantitative model to evaluate solubility relationship of polymorphs from their thermal properties. Pharm Res. 2005;22:1149–57.

    Article  CAS  PubMed  Google Scholar 

  • McNamara D, Childs S, Giordano J, Iarriccio A, Cassidy J, Shet M, Mannion R, O’Donnell E, Park A. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res. 2006;23:1888–97.

    Article  CAS  PubMed  Google Scholar 

  • Medina C, Daurio D, Nagapudi K, Alvarez-Nunez F. Manufacture of pharmaceutical cocrystals using twin screw extrusion: a solvent-less and scalable process. J Pharm Sci. 2010;99:1693–6.

    Article  CAS  PubMed  Google Scholar 

  • Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO III. Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption. Pharm Res. 2008;25:1450–9.

    Article  CAS  PubMed  Google Scholar 

  • Morissette SL, Soukasene S, Levinson D, Cima MJ, Almarsson Ö. Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization. Proc Natl Acad Sci U S A. 2003;100:2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morissette SL, Almarsson Ö, Peterson ML, Remenar JF, Read MJ, Lemmo AV, Ellis S, Cima MJ, Gardner CR. High-throughput crystallization: polymorphs, salts, cocrystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004;56:275–300.

    Article  CAS  PubMed  Google Scholar 

  • Morris KR, Fakes MG, Thakur AB, Newman AW, Singh AK, Venit JJ, Spagnuolo CJ, Serajuddin A. An integrated approach to the selection of optimal salt form for a new drug candidate. Int J Pharm. 1994;105:209–17.

    Article  CAS  Google Scholar 

  • Murshedkar T. Effect of crystalline to amorphous conversions on solubility of cefuroxime axetil. University of Rhode Island; 2002.

    Google Scholar 

  • Musumeci D, Hunter CA, Prohens R, Scuderi S, McCabe JF. Virtual cocrystal screening. Chem Sci. 2011;2:883–90.

    Article  CAS  Google Scholar 

  • O’Connor KM, Corrigan OI. Preparation and characterisation of a range of diclofenac salts. Int J Pharm. 2001;226:163–79.

    Article  PubMed  Google Scholar 

  • Oszczapowicz I, Małafiej E, Szelachowska M, Horoszewicz-Małafiej A, Kuklewicz C, Sierańska E. Esters of cephalosporins. Part II. Differences in the properties of various forms of the 1-acetoxyethyl ester of cefuroxime. Acta Pol Pharm. 1994;52:397–401.

    Google Scholar 

  • Parks GS, Huffman HM, Cattoir FR. Studies on glass II: the transition between the glassy and liquid states in the case of glucose. J Phys Chem. 1928;32:1366–79.

    Article  CAS  Google Scholar 

  • Parks GS, Snyder LJ, Cattoir FR. Studies on glass XI. Some thermodynamic relations of glassy and alpha-crystalline glucose. J Phys Chem. 1934;2:595–8.

    Article  CAS  Google Scholar 

  • Paulekuhn GS, Dressman JB, Saal C. Trends in active pharmaceutical ingredient salt selection based on analysis of the orange book database. J Med Chem. 2007;50:6665–72.

    Article  CAS  PubMed  Google Scholar 

  • Peterson ML, Morissette SL, McNulty C, Goldsweig A, Shaw P, LeQuesne M, Monagle J, Encina N, Marchionna J, Johnson A, Gonzalez-Zugasti J, Lemmo AV, Ellis SJ, Cima MJ, Almarsson Ö. Iterative high-throughput polymorphism studies on acetaminophen and an experimentally derived structure for form III. J Am Chem Soc. 2002;124:10958–9.

    Article  CAS  PubMed  Google Scholar 

  • Porter WW III, Elie SC, Matzger AJ. Polymorphism in carbamazepine cocrystals. Crys Growth Des. 2008;8:14–6.

    Article  CAS  Google Scholar 

  • Pudipeddi M, Serajuddin ATM. Trends in solubility of polymorphs. J Pharm Sci. 2005;94:929–39.

    Article  CAS  PubMed  Google Scholar 

  • Rajput L, Sanphui P, Desiraju GR. New solid forms of the anti-HIV drug etravirine: salts, cocrystals, and solubility. Cryst Growth Des. 2013;13:3681–90.

    Article  CAS  Google Scholar 

  • Ray E, Vaghasiya K, Sharma A, Shukla R, Khan R, Kumar A, Verma RK. Autophagy-inducing inhalable cocrystal formulation of niclosamide-nicotinamide for lung cancer therapy. AAPS Pharm Sci Tech. 2020;21:260.

    Article  CAS  Google Scholar 

  • Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzmán HR, Almarsson Ö. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc. 2003;125:8456–7.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Hornedo N, Nehm SJ, Seefeldt KF, Pagán-Torres Y, Falkiewicz CJ. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm. 2006;3:362–7.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Spong B, Price CP, Jayasankar A, Matzger AJ, Rodríguez-Hornedo N. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv Drug Deliv Rev. 2004;56:241–74.

    Article  PubMed  CAS  Google Scholar 

  • Sanphui P, Mishra MK, Ramamurty U, Desiraju GR. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: voriconazole as a case study. Mol Pharm. 2015;12:889–97.

    Article  CAS  PubMed  Google Scholar 

  • Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Crys Growth Des. 2009;9:2950–67.

    Article  CAS  Google Scholar 

  • Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59:603–16.

    Article  CAS  PubMed  Google Scholar 

  • Shalaev E, Zografi G. The concept of “structure” in amorphous solids from the perspective of the pharmaceutical sciences. Amorphous Food & Pharmaceut Syst. 2002;281:11–30.

    CAS  Google Scholar 

  • Shan N, Zaworotko MJ. The role of cocrystals in pharmaceutical science. Drug Discov Today. 2008;13:440–6.

    Article  CAS  PubMed  Google Scholar 

  • Shattock TR, Arora KK, Vishweshwar P, Zaworotko MJ. Hierarchy of supramolecular synthons: persistent carboxylic acid-pyridine hydrogen bonds in cocrystals that also contain a hydroxyl moiety. Cryst Growth Des. 2008;8:4533–45.

    Article  CAS  Google Scholar 

  • Singhal D, Curatolo W. Drug polymorphism and dosage form design – a practical perspective. Adv Drug Deliv Rev. 2004;56:335–47.

    Article  CAS  PubMed  Google Scholar 

  • Somani JK, Bhushan I, Sen H. Bioavailable oral dosage form of cefuroxime axetil, 2001. US Patent 6,323,193;

    Google Scholar 

  • Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst Growth Des. 2008;8:1575–9.

    Article  CAS  Google Scholar 

  • Tanaka R, Hattori Y, Otsuka M, Ashizawa K. Application of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder technology. Drug Dev Ind Pharm. 2020;46:179–87.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Osotprasit S, Peerapattana J, Ashizawa K, Hattori Y, Otsuka M. Complete cocrystal formation during resonant acoustic wet granulation: effect of granulation liquids. Pharmaceutics. 2021;13:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Han Y, Ali I, Luo H, Nowak A, Li J. Stability and phase transition investigation of olanzapine polymorphs. Chem Phys Lett. 2021;767:138384.

    Article  CAS  Google Scholar 

  • Testa CG, Prado LD, Costa RN, Costa ML, Linck YG, Monti GA, Cuffini SL, Rocha HVA. Challenging identification of polymorphic mixture: Polymorphs I, II and III in olanzapine raw materials. Int J Pharm. 2019;556:125–35.

    Article  CAS  PubMed  Google Scholar 

  • Tong WQT, Whitesell G. In situ salt screening-a useful technique for discovery support and preformulation studies. Pharm Dev Technol. 1998;3:215–23.

    Article  CAS  PubMed  Google Scholar 

  • Torchilin V. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Trask AV, Motherwell WDS, Jones W. Solvent-drop grinding: green polymorph control of cocrystallisation. Chem Commun. 2004;7:890–1.

    Article  CAS  Google Scholar 

  • Trask AV, Motherwell WDS, Jones W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des. 2005a;5:1013–21.

    Article  CAS  Google Scholar 

  • Trask AV, van de Streek J, Motherwell WDS, Jones W. Achieving polymorphic and stoichiometric diversity in cocrystal formation: importance of solid-state grinding, powder x-ray structure determination, and seeding. Cryst Growth Des. 2005b;5:2233–41.

    Article  CAS  Google Scholar 

  • Van Eerdenbrugh B, Raina S, Hsieh Y-L, Augustijns P, Taylor LS. Classification of the crystallization behavior of amorphous active pharmaceutical ingredients in aqueous environments. Pharm Res. 2014;31:969–82.

    Article  PubMed  CAS  Google Scholar 

  • Viscomi G, Campana M, Barbanti M, Grepioni F, Polito M, Confortini D. Crystal forms of rifaximin and their effect on pharmaceutical properties. CrstEngComm. 2008;10:1074–81.

    Article  CAS  Google Scholar 

  • Walsh D, Serrano DR, Worku ZA, Madi AM, O’Connell P, Twamley B, Healy AM. Engineering of pharmaceutical cocrystals in an excipient matrix: spray drying versus hot melt extrusion. Int J Pharm. 2018;551:241–56.

    Article  CAS  PubMed  Google Scholar 

  • Ware E, Lu DR. An automated approach to salt selection for new unique trazodone salts. Pharm Res. 2004;21:177–84.

    Article  CAS  PubMed  Google Scholar 

  • Wells JI. Pharmaceutical preformulation: the physicochemical properties of drug substances. Chichester: Ellis Horwood; 1988.

    Google Scholar 

  • Wyttenbach N, Kuentz M. Glass-forming ability of compounds in marketed amorphous drug products. Eur J Pharm Biopharm. 2017;112:204–8.

    Article  CAS  PubMed  Google Scholar 

  • **ang T-X, Anderson BD. A molecular dynamics simulation of reactant mobility in an amorphous formulation of a peptide in poly(vinylpyrrolidone). J Pharm Sci. 2004;93:855–76.

    Article  CAS  PubMed  Google Scholar 

  • Yousef MAE, Vangala VR. Pharmaceutical cocrystals: molecules, crystals, formulations, medicines. Cryst Growth Des. 2019;19:7420–38.

    Article  CAS  Google Scholar 

  • Yu L. Inferring thermodynamic stability relationship of polymorphs from melting data. J Pharm Sci. 1995;84:966–74.

    Article  CAS  PubMed  Google Scholar 

  • Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48:27–42.

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Reutzel SM, Stephenson GA. Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharmaceut Sci Tech Today. 1998;1:118–27.

    Article  CAS  Google Scholar 

  • Zhang GGZ, Henry RF, Borchardt TB, Lou X. Efficient cocrystal screening using solution-mediated phase transformation. J Pharm Sci. 2007;96:990–5.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman AW. Treating autism and other developmental disorders in children with NMDA receptor antagonists, 1991. US Patent 4,994,467

    Google Scholar 

  • Zografi G, Newman A. Interrelationships between structure and the properties of amorphous solids of pharmaceutical interest. J Pharm Sci. 2017;106:5–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Williams III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jara, M.O., Hughey, J.R., Huang, S., Williams, R.O. (2022). Solid-State Techniques for Improving Solubility. In: Williams III, R.O., Davis Jr., D.A., Miller, D.A. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-88719-3_3

Download citation

Publish with us

Policies and ethics

Navigation