Bayesian Estimation for Bivariate Gamma Processes with Copula

  • Chapter
  • First Online:
Bayesian Inference and Computation in Reliability and Survival Analysis

Abstract

Gamma stochastic process has been proposed to replace Brownian motion and geometric Brownian motion to characterize the degradation measurements from an accelerated degradation test (ADT). Tsai et al. [27] applied bivariate Gamma process to model the two-variable ADT under the independent assumption. In this chapter, we consider three bivariate Gamma processes utilizing the Clayton, Frank, and Gumbel copulas to describe the dependence characteristics of bivariate Gamma variables. Owing to the complex structure of modeling, the differentiation-based likelihood estimation of the copulas are not always tractable. Bayesian analysis using Markov chain Monte Carlo method is an effective alternative to implement parameter estimation and model comparisons. Extensive simulation studies that calculate the mean square errors (MSEs) of the derived estimates are conduced to show the efficiency of the proposed method. Three data sets from the Clayton, Frank, and Gumbel copulas are analyzed and used for the demonstration of model selections via Bayesian approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 145.59
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 145.59
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boulanger, M., Escobar, L. A.: Experimental design for a class of accelerated degradation tests. Technometrics 36, 260–272 (1994)

    Article  Google Scholar 

  2. Chen, M. H.: Computing marginal likelihoods from a single MCMC output. Statistica Neerlandica 59, 16–29 (2005)

    Article  MathSciNet  Google Scholar 

  3. Chiang, J.-Y, Zhu, J., Lin, Y.-J., Lio, Y.L., Tsai, T.-R.: Inference from two-variable degradation data using genetic algorithm and Markov Chain Monte Carlo Methods. Int. J. Inform. Manag. Sci. 29, 235–256 (2018)

    MATH  Google Scholar 

  4. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49, 327–335 (1995)

    Google Scholar 

  5. Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91(434), 883–904 (1996)

    Article  MathSciNet  Google Scholar 

  6. de Valpine, P., Paciorek, C., Turek, D., Michaud, N., Anderson-Bergman, C., Obermeyer, F., Wehrhahn Cortes, C., Rodríguez, A., Temple Lang, D., Paganin, S.: NIMBLE: MCMC, Particle Filtering, and Programmable Hierarchical Modeling (2021). https://cran.r-project.org/package=nimble

  7. de Valpine, P., Paciorek, C., Turek, D., Michaud, N., Anderson-Bergman, C., Obermeyer, F., Wehrhahn Cortes, C., Rodríguez, A., Temple Lang, D., Paganin, S.: NIMBLE User Manual (2021). r-nimble.org

  8. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis (3rd edn.) Chapman & Hall, London (2013)

    Book  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Math. Intell. 6, 721–741 (1984)

    Article  Google Scholar 

  10. Gertsbackh, I.B., Kordonskiy, K.B.: Models of Failure. Springer, New York (1969)

    Book  Google Scholar 

  11. Guan, Q., Tang, Y.-C.: Optimal design of accelerated degradation test based on gamma process models. Chinese J. Appl. Probab. Stat. 29, 213–224 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Hastings, W.K.: Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  13. Liao, C.-M., Tseng, S.-T.: Optimal design for step-stress accelerated degradation tests. IEEE Trans. Reliab. 55, 59–66 (2006)

    Article  Google Scholar 

  14. Lim, H., Yum, B.-J.: Optimal design of accelerated degradation tests based on Wiener process models. J. Appl. Stat. 38, 309–325 (2011)

    Article  MathSciNet  Google Scholar 

  15. Ling, M.H., Tsui, K.L., Balakrishnan, N.: Accelerated degradation analysis for the quality of a system based on the gamma process. IEEE Trans. Reliab. 64, 463–472 (2015)

    Article  Google Scholar 

  16. Lu, C.J., Meeker, W.Q.: Using degradation measures to estimate a time-to-failure distribution. Technometrics 35, 161–174 (1993)

    Article  MathSciNet  Google Scholar 

  17. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  18. Padgett, W.J., Tomlinson, M.A.: Inference from accelerated degradation and failure data based on Gaussian process models. Lifetime Data Anal. 10, 191–206 (2004)

    Article  MathSciNet  Google Scholar 

  19. Park, C., Padgett, W.J.: Accelerated degradation models for failure based on geometric Brownian motion and gamma process. Lifetime Data Anal. 11, 511–527 (2005)

    Article  MathSciNet  Google Scholar 

  20. Park, C., Padgett, W.J.: Stochastic degradation models with several accelerating variables. IEEE Trans. Reliab. 55, 379–390 (2006)

    Article  Google Scholar 

  21. Park, C., Padgett, W.J.: Cumulative damage models for failure with several accelerating variables. Quality Technol. Quant. Manag. 4, 17–34 (2007)

    Article  MathSciNet  Google Scholar 

  22. Peng, J.-Y.: A note on optimal allocations for the second elementary symmetric function with applications for optimal reliability design. Nav. Res. Logist. 59, 278–284 (2012)

    Article  MathSciNet  Google Scholar 

  23. Tan, M.T., Tian, G.L., Ng, K.W.: Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation. Chapman & HalI/CRC CRC Press, Florida (2010)

    MATH  Google Scholar 

  24. Tsai, T.-R., Lin, C.-W., Sung, Y.-L., Chou, P.-T., Chen C.-L., Lio, Y.L.: Inference from lumen degradation data under Wiener diffusion process. IEEE Trans. Reliab. 61, 710–718 (2012)

    Article  Google Scholar 

  25. Tsai, C.-C., Tseng, S.-T., Balakrishnan, N.: Optimal burn-in policy for highly reliable products using gamma degradation process. IEEE Trans. Reliab. 60, 338–350 (2013)

    Google Scholar 

  26. Tsai, T.-R., Lio, Y. L., Jiang, N.: Optimal decision on the accelerated degradation test plan under the Wiener process. Qual. Technol. Quantit. Manag. 11, 461–470 (2014)

    Article  Google Scholar 

  27. Tsai, T.-R., Sung, W-Y, Lio, Y. L., Chang, S., Lu, J.-C.: Optimal two-variable accelerated degradation test plan for gamma degradation processes. IEEE Trans. Reliab. 65, 459–468 (2016)

    Google Scholar 

  28. Tseng, S.-T., Balakrishnan N., Tsai, C.-C.: Optimal step-stress accelerated degradation test plan for gamma degradation process. IEEE Trans. Reliab. 58, 234–245 (2011)

    Google Scholar 

  29. Whitmore, G.A.: Estimating degradation by a Wiener diffusion process subject to measurement error. Lifetime Data Anal. 1, 307–319 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Ru Tsai .

Editor information

Editors and Affiliations

Appendix

Appendix

Below are the R codes via NIMBLE package in Bayesian using Gibbs sampling (BUGS) language to estimate the parameters (s1, r2, s2, r2), including copula parameter (theta).

# install.packages("copula")         ## R copula package                                         (r-nimble.org) # install.packages("nimble", type="source") #    NIMBLE needs a C++ compiler and the standard utility 'make'      to generate and compile C++ library(nimble)                  ## call NIMBLE package library(copula)                  ## call copula package                                  ## Generate bivariate Gamma                                  variates from  Clayton copula theta =3 # the target copula parameter n1=n=3                           ## no. of units used for each                                     treatment C=50 k=6                              ## set up k=6 treatments tU=168∗26                        ## 26 weeks (one week=168                                     hours) for ADT t=seq(0,tU,168∗2)/24             ## check the test each two weeks m=length(t)-1                    ## no. of measurement times dt=t[2:(m+1)]-t[1:m]             ## scaled time increments LL=L=array(dim=c(6,2)) LL[1,]=c(25, 350) LL[2,]=c(45, 650) LL[3,]=c(60, 650) LL[4,]=c(75, 450) LL[5,]=c(75, 550) LL[6,]=c(75, 650) mL1=max(LL[,1]) mL2=max(LL[,2]) L[,1]=(1/(25+273.15)-1/(LL[,1]+273.15))/(1/(25+273.15)-1/ (mL1+273.15)) L[,2]=(log(LL[,2])-log(350))/(log(mL2)-log(350)) r0=-2.902;  r1=0.577; r2=0.533; r3=0.531; be=0.662 v.r=c(r0,r1,r2,r3,be) generatedata=function(v,t,be,n1, theta)  {m=length(t)-1           # no. of measurement times   y=array(dim=c(2,m,n1,k)) for (i in 1:k) {for (j in 1:n1){      cop <- claytonCopula(param = theta, dim = 2)      U <- rCopula(m, cop)      y[1,,j,i]= qgamma(U[,1],shape=v[i]∗dt[i],scale=be)      y[2,,j,i]= qgamma(U[,2],shape=v[i]∗dt[i],scale=be)      } } return(y) # 4 dimensional data } v=rep(0,k)                                                                                                                            # the drift parameter for each treatment v0=exp(r0) for (i in 1:k) {v[i]=v0∗exp(r1∗L[i,1]+r2∗L[i,2]+r3∗L[i,1]                      ∗L[i,2])} #delta yy= generatedata (v,t,be,n1, theta)  # generate the bivariate                                        copula data y1=yy[1,,,]; y2=yy[2,,,] zeros=array(0,dim=c(m,n1,k)) mydata=list(xx=y1, yy=y2,  L=L , r3=0.531) # the data set myinits=function()list(theta=5, r0=-2.8,  r1=0.4, r2=0.4,                         be=0.5) # initial values ClaytonCode=nimbleCode({           # likelihood defined below for (mm in 1:13){ for( nn in 1:n1){   for (ii in 1:6){     delta[mm,nn,ii] <- (exp(r0)∗exp(r1∗L[ii,1]+r2∗L[ii,2]+r3                                     ∗L[ii,1]∗L[ii,2]))∗ 14     dummy[mm,nn,ii] ~ dpois(negLogLike[mm,nn,ii]) # zero trick     u[mm,nn,ii]<- pgamma(xx[mm,nn,ii], shape=delta[mm,nn,ii],                       scale=be)      # marginal gamma CDF     v[mm,nn,ii]<- pgamma(yy[mm,nn,ii], shape=delta[mm,nn,ii],                                        scale=be)     negLogLike[mm,nn,ii]<-  100+(-1)∗logLike[mm,nn,ii]     logLike[mm,nn,ii]<- log(theta+1)+(-theta-1)∗log(u[mm,nn,ii]                                                  ∗v[mm,nn,ii])+           ((-1)∗(2∗theta+1)/theta)∗log(u[mm,nn,ii]ˆ(-theta)+           v[mm,nn,ii]ˆ(-theta)-1)+           log(dgamma(xx[mm,nn,ii], delta[mm,nn,ii],scale=be))+           log(dgamma(yy[mm,nn,ii],delta[mm,nn,ii],scale=be))   ## negLogLike[mm,nn,ii]= (-1)∗log-likelihood, which is      "the negative value of the log-likelihood function"   ## logLike[mm,nn,ii] is the log-likelihood of Eq.(3) }}} theta~ dgamma(.01,.01)    # parameter’s prior distributions r0  ~ dunif(-3.5,-2.5) r1  ~ dgamma(.01,.01) r2  ~ dgamma(.01,.01) be ~  dgamma(.01,.01) }) # end of nimbleCode function                                              # computing the                                              estimation by MCMC                                              method mcmc.out=nimbleMCMC(ClaytonCode,             # call  "Clayton                                              Code" nimbleCode  monitors=c("theta","r0", "r1", "r2","be"),  # interested param-                                                  eters  constants=list(xx=y1, yy=y2, L=L, r3=0.531, n1=n1),  data=list(dummy=zeros),                     # data and constants  inits=myinits, thin=1,                      #  initial values  nchains=2, niter=20000, nburnin=1000,       # 2 chains, 20000                                                MCMC iterations,                                                1000 burn-in periods  summary=TRUE)                               #  summary of the MCMC                                                estimation mcmc.out$summary                             # the MCMC estimates ## The Bayes estimates:  be=0.6242, r0=-2.8598, r1= 0.4528,    r2=0.6806, theta= 2.7733 ## Below are the sample MCMC outputs. #$chain1 #             Mean    Median  St. Dev. 95%CI_low 95%CI_upp #    be      0.6267   0.6231   0.0619    0.5205        0.7647 #    r0     -2.8652  -2.8627   0.1334   -3.1288       -2.6053 #    r1      0.4543   0.4579   0.1364    0.1846        0.7146 #    r2      0.6802   0.6780   0.1255    0.4274        0.9284 #    theta  2.7884   2.7655   0.3917    2.0927        3.6011 #$chain2 #            Mean    Median  St. Dev.  95%CI_low 95%CI_upp #    be      0.6217   0.6183   0.0629    0.5083        0.7606 #    r0     -2.8545  -2.8513   0.1357   -3.1315       -2.6027 #    r1      0.4513   0.4509   0.1303    0.1917        0.7012 #    r2      0.6810   0.6815   0.1218    0.4339        0.9195 #    theta  2.7581   2.7353   0.3877    2.0658        3.5689 #$all.chains #            Mean    Median  St. Dev. 95%CI_low 95%CI_upp #    be      0.6242   0.6205   0.0625    0.5141        0.7623 #    r0     -2.8598  -2.8568   0.1347   -3.1300       -2.6035 #    r1      0.4528   0.4544   0.1334    0.1886        0.7081 #    r2      0.6806   0.6796   0.1237    0.4306        0.9247 #    theta  2.7733   2.7475   0.3900    2.0775        3.5940

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Lin, YJ., Tsai, TR., Lio, Y. (2022). Bayesian Estimation for Bivariate Gamma Processes with Copula. In: Lio, Y., Chen, DG., Ng, H.K.T., Tsai, TR. (eds) Bayesian Inference and Computation in Reliability and Survival Analysis. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-88658-5_8

Download citation

Publish with us

Policies and ethics

Navigation