Modelling of Biomaterials as an Application of the Theory of Mixtures

  • Chapter
  • First Online:
Modeling Biomaterials

Part of the book series: Nečas Center Series ((NECES))

Abstract

An overview of the mixture theory is provided while building upon similarities with the classical single continuum theory. The mixture theory can be formulated on different levels of description, in terms of different state variables. The second law of thermodynamics is used as a fundamental constraint for obtaining the constitutive relations, the closures. For this purpose, one can either use a definition of entropy (Gibbs’ relation) or a definition of temperature, which is used to identify the entropy production. We discuss the significance and role of coupling in a model formulation and illustrate it using examples stemming from biology.

The theory is applied to the formulation of a biphasic model of cartilage. The superiority of mixture theory over the single continuum framework is evident, but there is a trade-off in terms of more parameters that need to be estimated and the number of boundary conditions. In the latter, the difficulties are inherent to the theory and remain an open problem. They are not derivable and require further modelling, although there are situations where boundary conditions can be assessed. Upscaling methods might provide answers in certain situations as well as a new idea within GENERIC framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abarbanel, H.D., Brown, R., Yang, Y.M.: Hamiltonian formulation of inviscid flows with free boundaries. The Physics of Fluids 31(10), 2802–2809 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ateshian, G.A.: On the theory of reactive mixtures for modeling biological growth. Biomechanics and Modeling in Mechanobiology 6(6), 423–445 (2007)

    Article  Google Scholar 

  3. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics 30(1), 197–207 (1967)

    Article  Google Scholar 

  4. Bedeaux, D., Albano, A., Mazur, P.: Boundary conditions and non-equilibrium thermodynamics. Physica A: Statistical Mechanics and its Applications 82(3), 438–462 (1976)

    Article  MathSciNet  Google Scholar 

  5. Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. International Journal of Engineering Science 21(8), 863–960 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen, R.M.: Theory of mixtures. In: A. Eringen (ed.) Continuum Physics, vol. 3. Academic Press, New York (1976)

    Google Scholar 

  7. Bulíček, M., Málek, J., Průša, V.: Thermodynamics and stability of non-equilibrium steady states in open systems. Entropy 21(7), 704 (2019)

    Article  MathSciNet  Google Scholar 

  8. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. John Wiley & Sons (1985)

    Google Scholar 

  9. Casimir, H.B.G.: On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945). https://doi.org/10.1103/RevModPhys.17.343

    Article  Google Scholar 

  10. Chadwick, P.: Continuum mechanics: concise theory and problems. Courier Corporation (2012)

    Google Scholar 

  11. Chen, I.C., Kuksenok, O., Yashin, V.V., Balazs, A.C., Van Vliet, K.J.: Mechanical resuscitation of chemical oscillations in Belousov–Zhabotinsky gels. Advanced Functional Materials 22(12), 2535–2541 (2012)

    Article  Google Scholar 

  12. De Groot, S.R., Mazur, P.: Non-equilibrium thermodynamics. Courier Corporation (2013)

    Google Scholar 

  13. Drew, D.A., Passman, S.L.: Theory of multicomponent fluids, vol. 135. Springer Science & Business Media (2006)

    Google Scholar 

  14. Drumheller, D.: On theories for reacting immiscible mixtures. International Journal of Engineering Science 38(3), 347–382 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Godunov, S.K., Romenskii, E.: Elements of continuum mechanics and conservation laws. Springer Science & Business Media (2003)

    Google Scholar 

  16. Gray, W.G., Miller, C.T.: Introduction to the thermodynamically constrained averaging theory for porous medium systems. Springer (2014)

    Google Scholar 

  17. Green, A.E., Naghdi, P.: A unified procedure for construction of theories of deformable media. iii. Mixtures of interacting continua. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 448(1934), 379–388 (1995)

    Google Scholar 

  18. Grmela, M., Klika, V., Pavelka, M.: Reductions and extensions in mesoscopic dynamics. Physical Review E 92(3), 032111 (2015)

    Article  Google Scholar 

  19. Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E 56(6), 6620 (1997)

    Article  Google Scholar 

  20. Gurtin, M.E., Fried, E., Anand, L.: The mechanics and thermodynamics of continua. Cambridge University Press (2010)

    Google Scholar 

  21. Hou, J., Holmes, M., Lai, W., Mow, V.: Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. Journal of Biomechanical Engineering 111(1), 78–87 (1989)

    Article  Google Scholar 

  22. Izadifar, Z., Chen, X., Kulyk, W.: Strategic design and fabrication of engineered scaffolds for articular cartilage repair. Journal of Functional Biomaterials 3(4), 799–838 (2012)

    Article  Google Scholar 

  23. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended irreversible thermodynamics. Springer (1996)

    Google Scholar 

  24. Klika, V.: Comparison of the effects of possible mechanical stimuli on the rate of biochemical reactions. The Journal of Physical Chemistry B 114(32), 10567–10572 (2010)

    Article  Google Scholar 

  25. Klika, V.: A guide through available mixture theories for applications. Critical reviews in solid state and materials sciences 39(2), 154–174 (2014)

    Article  Google Scholar 

  26. Klika, V., Gaffney, E.A., Chen, Y.C., Brown, C.P.: An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology. Journal of the Mechanical Behavior of Biomedical Materials 62, 139–157 (2016)

    Article  Google Scholar 

  27. Klika, V., Grmela, M.: Coupling between chemical kinetics and mechanics that is both nonlinear and compatible with thermodynamics. Physical Review E 87(1), 012141 (2013)

    Article  Google Scholar 

  28. Klika, V., Grmela, M.: Mechano-chemical coupling in Belousov-Zhabotinskii reactions. The Journal of Chemical Physics 140(12), 124110 (2014)

    Article  Google Scholar 

  29. Klika, V., Krause, A.L.: Beyond Onsager–Casimir relations: shared dependence of phenomenological coefficients on state variables. The Journal of Physical Chemistry Letters 9(24), 7021–7025 (2018)

    Article  Google Scholar 

  30. Klika, V., Kubant, J., Pavelka, M., Benziger, J.B.: Non-equilibrium thermodynamic model of water sorption in Nafion membranes. Journal of Membrane Science 540, 35–49 (2017)

    Article  Google Scholar 

  31. Klika, V., Maršík, F.: Coupling effect between mechanical loading and chemical reactions. The Journal of Physical Chemistry B 113(44), 14689–14697 (2009)

    Article  Google Scholar 

  32. Klika, V., Pavelka, M., Benziger, J.B.: Functional constraints on phenomenological coefficients. Physical Review E 95(2), 022125 (2017)

    Article  Google Scholar 

  33. Klika, V., Pavelka, M., Vágner, P., Grmela, M.: Dynamic maximum entropy reduction. Entropy 21(7), 715 (2019)

    Article  MathSciNet  Google Scholar 

  34. Klika, V., Pérez, M.A., García-Aznar, J.M., Maršík, F., Doblaré, M.: A coupled mechano-biochemical model for bone adaptation. Journal of Mathematical Biology 69(6–7), 1383–1429 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Klika, V., Votinská, B.: Towards systematic approach to boundary conditions in multiphasic and mixture models: Maximum entropy principle estimate. International Journal of Engineering Science (2021). Submitted

    Google Scholar 

  36. Klika, V., Whiteley, J.P., Brown, C.P., Gaffney, E.A.: The combined impact of tissue heterogeneity and fixed charge for models of cartilage: the one-dimensional biphasic swelling model revisited. Biomechanics and Modeling in Mechanobiology 18(4), 953–968 (2019)

    Article  Google Scholar 

  37. Krause, A.L., Klika, V., Woolley, T.E., Gaffney, E.A.: From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ. Journal of the Royal Society Interface 17(162), 20190621 (2020)

    Article  Google Scholar 

  38. Krishna, R., Wesselingh, J.: The Maxwell-Stefan approach to mass transfer. Chemical Engineering Science 52(6), 861–911 (1997)

    Article  Google Scholar 

  39. Lai, W., Hou, J., Mow, V.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. Journal of Biomechanical Engineering 113(3), 245–258 (1991)

    Article  Google Scholar 

  40. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding non-equilibrium thermodynamics, vol. 295. Springer (2008)

    Google Scholar 

  41. Málek, J., Souček, O.: Theory of mixtures. Lecture notes (2019). http://geo.mff.cuni.cz/~soucek/vyuka/materials/theory-of-mixtures/theory_of_mixtures-lecture-notes.pdf. Accessed on 23 Oct,2020

  42. Massoudi, M.: On the importance of material frame-indifference and lift forces in multiphase flows. Chemical Engineering Science 57(17), 3687–3701 (2002)

    Article  Google Scholar 

  43. Mow, V.C., Kuei, S., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. Journal of Biomechanical Engineering 102(1), 73–84 (1980)

    Article  Google Scholar 

  44. Müller, I., Ruggeri, T.: Rational extended thermodynamics, vol. 37. Springer Science & Business Media (2013)

    Google Scholar 

  45. Murdoch, A.: On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases. Arch. Ration. Mech. Anal 83(2), 183 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. Murray, J.D.: Mathematical biology: I. An introduction, vol. 17. Springer Science & Business Media (2007)

    Google Scholar 

  47. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931). https://doi.org/10.1103/PhysRev.38.2265

    Article  MATH  Google Scholar 

  48. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931). https://doi.org/10.1103/PhysRev.38.2265

    Article  MATH  Google Scholar 

  49. Öttinger, H.C., Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Physical Review E 56(6), 6633 (1997)

    Article  Google Scholar 

  50. Pavelka, M., Klika, V., Esen, O., Grmela, M.: A hierarchy of Poisson brackets in non-equilibrium thermodynamics. Physica D: Nonlinear Phenomena 335, 54–69 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pavelka, M., Klika, V., Grmela, M.: Time reversal in nonequilibrium thermodynamics. Physical Review E 90(6), 062131 (2014)

    Article  Google Scholar 

  52. Pavelka, M., Klika, V., Grmela, M.: Multiscale thermo-dynamics: introduction to GENERIC. Walter de Gruyter GmbH & Co KG (2018)

    Google Scholar 

  53. Pavelka, M., Maršík, F., Klika, V.: Consistent theory of mixtures on different levels of description. International Journal of Engineering Science 78, 192–217 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Pavelka, M., Peshkov, I., Klika, V.: On Hamiltonian continuum mechanics. Physica D: Nonlinear Phenomena 408, 132510 (2020)

    Article  MathSciNet  Google Scholar 

  55. Pavelka, M., Peshkov, I., Sỳkora, M.: A note on construction of continuum mechanics and thermodynamics. In: Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov’s Legacy, pp. 283–289. Springer (2020)

    Google Scholar 

  56. Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Continuum Mechanics and Thermodynamics 28(1–2), 85–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rajagopal, K.: On boundary conditions for fluids of the differential type. In: Navier Stokes Equations and Related Nonlinear Problems, pp. 273–278. Springer (1995)

    Google Scholar 

  58. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Studies in Applied Mathematics 50(2), 93–101 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  59. Souček, O., Heida, M., Málek, J.: On a thermodynamic framework for develo** boundary conditions for Korteweg-type fluids. International Journal of Engineering Science 154, 103316 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. Souček, O., Orava, V., Málek, J., Bothe, D.: A continuum model of heterogeneous catalysis: Thermodynamic framework for multicomponent bulk and surface phenomena coupled by sorption. International Journal of Engineering Science 138, 82–117 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Souček, O., Průša, V., Málek, J., Rajagopal, K.: On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures. Acta Mechanica 225(11), 3157–3186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Waldmann, L.: Reciprocity and boundary conditions for transport-relaxation equations. Zeitschrift für Naturforschung A 31(12), 1439–1450 (1976)

    Article  Google Scholar 

  63. Whiteley, J.P., Gaffney, E.A.: Modelling the inclusion of swelling pressure in a tissue level poroviscoelastic model of cartilage deformation. Mathematical Medicine and Biology: A Journal of the IMA (2020)

    Google Scholar 

Download references

Acknowledgements

Václav Klika is grateful for support from the Czech Grant Agency, project number 20-22092S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Klika .

Editor information

Editors and Affiliations

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klika, V. (2021). Modelling of Biomaterials as an Application of the Theory of Mixtures. In: Málek, J., Süli, E. (eds) Modeling Biomaterials. Nečas Center Series. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-88084-2_4

Download citation

Publish with us

Policies and ethics

Navigation