A Fast Method for Extracting Parameters of Circular Objects

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Abstract

A region-based method is proposed for extracting parameters of circular objects in images. The Hough space is defined by a 2-dimensional accumulator with less columns. By analysing the voting values distribution in each column of the accumulator, a quadratic function, which denotes the relationship between the voting value and the voting distance, is deduced. Regrading all columns, a linear function formula is deduced by analysing the relationship between mean voting distances and the voting angles. After all region pixels have voted for 2D accumulator, a quadratic function is fitted in each column. The circle radius is calculated based on the fitted coefficients. Then a linear function is fitted to mean voting distances corresponding to every voting angles. The circle center coordinates are computed based on the fitted coefficients. Synthetic images and real-world images are used to test the proposed region-based method. Experimental results show the proposed method is fast and accurate even in the presence of contour defects and outliers.

Supported by the National Natural Science Foundation of China (61602063), Jiangsu Collaborative Innovation Center for Cultural Creativity (XYN1705).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, S., Rauh, W., WarnEcKe, H.: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recogn. 34(12), 2283–2303 (2001)

    Article  Google Scholar 

  2. Bargoti, S., Underwood, J.P.: Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 34(6), 1039–1060 (2017)

    Article  Google Scholar 

  3. Butters, L., Xu, Z., Trung, K., Klette, R.: Measuring apple size distribution from a near topcdown image. In: Pacific-Rim Symposium on Image and Video Technology, pp. 255–268 (2019)

    Google Scholar 

  4. Cauchie, J., Fiolet, V., Villers, D.: Optimization of an hough transform algorithm for the search of a center. Pattern Recogn. 41(2), 567–574 (2008)

    Article  Google Scholar 

  5. Chan, Y., Lee, B., Thomas, S.: Approximate maximum likelihood estimation of circle parameters. J. Optim. Theory Appl. 125(3), 723–734 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chen, T., Chung, K.: An efficient randomized algorithm for detecting circles. Comput. Vis. Image Underst. 83(2), 172–191 (2001)

    Article  Google Scholar 

  7. Chernov, N., Lesort, C.: Least squares fitting of circles. J. Math. Imaging Vis. 23(3), 239–252 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chiu, S., Liaw, J.: An effective voting method for circle detection. Pattern Recogn. Lett. 26(2), 121–133 (2005)

    Article  Google Scholar 

  9. Chung, K., Huang, Y., Wang, J., Chang, T., Liao, H.: Fast randomized algorithm for center-detection. Pattern Recogn. 43(8), 2659–2665 (2010)

    Article  Google Scholar 

  10. Jiang, L., Wang, Z., Ye, Y., Jiang, J.: Fast circle detection algorithm based on sampling from difference area. Optik 158, 424–433 (2018)

    Article  Google Scholar 

  11. Kim, H., Kim, J.: A two-step circle detection algorithm from the intersecting chords. Pattern Recogn. Lett. 22(6), 787–798 (2001)

    Article  Google Scholar 

  12. Kotyza, J., Machacek, Z., Koziorek, J.: Detection of directions in an image as a method for circle detection. IFAC-PapersOnLine 51(6), 496–501 (2018)

    Article  Google Scholar 

  13. Li, Q., Wu, M.: An improved hough transform for circle detection using circular inscribed direct triangle. In: 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, pp. 203–207 (2020)

    Google Scholar 

  14. Liang, Q., et al.: Angle aided circle detection based on randomized hough transform and its application in welding spots detection. Mathe. Biosci. Eng. MBE 16(3), 1244–1257 (2019)

    MathSciNet  Google Scholar 

  15. Ma, Z., Ho, K.C., Le, Y.: Solutions and comparison of maximum likelihood and full-least-squares estimations for circle fitting. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 3257–3260 (2009)

    Google Scholar 

  16. Manzanera, A., Nguyen, T., Xu, X.: Line and circle detection using dense one-to-one hough transforms on greyscale images. EURASIP J. Image Video Process. 2016(1), 46 (2016)

    Article  Google Scholar 

  17. Naqvi, S.S., Fatima, N., Khan, T.M., Rehman, Z.U., Khan, M.A.: Automatic optic disk detection and segmentation by variational active contour estimation in retinal fundus images. SIViP 13(6), 1191–1198 (2019). https://doi.org/10.1007/s11760-019-01463-y

    Article  Google Scholar 

  18. Okokpujie, K., Noma-Osaghae, E., John, S., Ajulibe, A.: An improved iris segmentation technique using circular hough transform. In: International Conference on Information Theoretic Security, pp. 203–211 (2017)

    Google Scholar 

  19. Rangarajan, P., Kanatani, K.: Improved algebraic methods for circle fitting. Electron. J. Stat. 3(1), 1–7 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Singla, B., Sharma, M., Gupta, A., Mohindru, V., Chawla, S.: An algorithm to recognize and classify circular objects from image on basis of their radius. In: The International Conference on Recent Innovations in Computing, pp. 407–417 (2020)

    Google Scholar 

  21. Smith, E., Lamiroy, B.: Circle detection performance evaluation revisited. In: International Workshop on Graphics Recognition, pp. 3–18 (2015)

    Google Scholar 

  22. Su, Y., Zhang, X., Cuan, B., Liu, Y., Wang, Z.: A sparse structure for fast circle detection. Pattern Recognit. 97, 107022 (2020)

    Article  Google Scholar 

  23. Yakaiah, P., Manjunathachari, K., Reddy, K.: A novel object detection approach using circular hough transform. J. Adv. Res. Dyn. Control Syst. 9(8), 264–273 (2017)

    Google Scholar 

  24. Yang, H., Luo, J., Shen, Z., Wu, W.: A local voting and refinement method for circle detection. Optik Int. J. Light Electron Optics 125(3), 1234–1239 (2014)

    Article  Google Scholar 

  25. Ye, H., Shang, G., Wang, L., Min, Z.: A new method based on hough transform for quick line and circle detection. In: 8th International Conference on Biomedical Engineering and Informatics, pp. 52–56 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zezhong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., You, Q., Qian, C. (2021). A Fast Method for Extracting Parameters of Circular Objects. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13020. Springer, Cham. https://doi.org/10.1007/978-3-030-88007-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88007-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88006-4

  • Online ISBN: 978-3-030-88007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation