Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2021)

Abstract

Conditional Granger causality, based on functional magnetic resonance imaging (fMRI) time series signals, is the quantification of how strongly brain activity in a certain source brain region contributes to brain activity in a target brain region, independent of the contributions of other source regions. Current methods to solve this problem are either unable to model nonlinear relationships between source and target signals, unable to efficiently quantify time lags in source-target relationships, or require ad hoc parameter settings and post hoc calculations to assess conditional Granger causality. This paper proposes the use of deep stacking networks, with dilated convolutional neural networks (CNNs) as component parts, to address these challenges. The dilated CNNs nonlinearly model the target signal as a function of source signals. Conditional Granger causality is assessed in terms of how much modeling fidelity increases when additional dilated CNNs are added to the model. Time lags between source and target signals are estimated by analyzing estimated dilated CNN parameters. Our technique successfully estimated conditional Granger causality, did not spuriously identify false causal relationships, and correctly estimated time lags when applied to synthetic datasets and data generated by the STANCE fMRI simulator. When applied to real-world task fMRI data from an epidemiological cohort, the method identified biologically plausible causal relationships among regions known to be task-engaged and provided new information about causal structure among sources and targets that traditional single-source causal modeling could not provide. The proposed method is promising for modeling complex Granger causal relationships within brain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Friston, K., Frith, C., Frackowiak, R.: Time-dependent changes in effective connectivity measured with PET. Hum. Brain Mapp. 1(1), 69–79 (1993)

    Article  Google Scholar 

  2. Seth, A.K., Barrett, A.B., Barnett, L.: Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35(8), 3293–3297 (2015)

    Article  Google Scholar 

  3. Chen, Y., et al.: Analyzing multiple nonlinear time series with extended Granger causality. Phys. Lett. A 324(1), 26–35 (2004)

    Article  MathSciNet  Google Scholar 

  4. Zhou, Z., et al.: Analyzing brain networks with PCA and conditional Granger causality. Hum. Brain Mapp. 30(7), 2197–2206 (2009)

    Article  Google Scholar 

  5. Zhou, Z., et al.: A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging. Magn. Reson. Imaging 29(3), 418–433 (2011)

    Article  Google Scholar 

  6. Dai, W., et al.: Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250(3), 856–866 (2009)

    Article  Google Scholar 

  7. Goebel, R., et al.: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality map**. Magn. Reson. Imaging 21(10), 1251–1261 (2003)

    Article  Google Scholar 

  8. He, J., et al.: Influence of functional connectivity and structural MRI measures on episodic memory. Neurobiol. Aging 33(11), 2612–2620 (2012)

    Article  Google Scholar 

  9. Logothetis, N.K., et al.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843), 150–157 (2001)

    Article  Google Scholar 

  10. Aertsen, A., et al.: Dynamics of neuronal firing correlation: modulation of “effective connectivity.” J. Neurophysiol. 61(5), 900–917 (1989)

    Article  Google Scholar 

  11. Buxton, R.B., et al.: Modeling the hemodynamic response to brain activation. Neuroimage 23, S220–S233 (2004)

    Article  Google Scholar 

  12. Grosmark, A.D., Buzsáki, G.: Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science 351(6280), 1440–1443 (2016)

    Article  Google Scholar 

  13. Johnston, L.A., et al.: Nonlinear estimation of the BOLD signal. Neuroimage 40(2), 504–514 (2008)

    Article  Google Scholar 

  14. Liao, W., et al.: Kernel Granger causality map** effective connectivity on fMRI data. IEEE Trans. Med. Imaging 28(11), 1825–1835 (2009)

    Article  Google Scholar 

  15. Marinazzo, D., et al.: Nonlinear connectivity by Granger causality. Neuroimage 58(2), 330–338 (2011)

    Article  Google Scholar 

  16. Barnett, L., Seth, A.K.: The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68 (2014)

    Article  Google Scholar 

  17. Guo, H., et al.: Kernel Granger causality based on back propagation neural network fuzzy inference system on fMRI data. IEEE Trans. Neural Syst. Rehabil. Eng. 28(5), 1049–1058 (2020)

    Article  Google Scholar 

  18. Li, F., et al.: Unified model selection approach based on minimum description length principle in Granger causality analysis. IEEE Access 8, 68400–68416 (2020)

    Article  Google Scholar 

  19. Chivukula, A.S., Li, J., Liu, W.: Discovering Granger-causal features from deep learning networks. In: Mitrovic, T., Xue, B., Li, X. (eds.) AI 2018. LNCS, vol. 11320, pp. 692‒705. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03991-2_62

  20. Duggento, A., Guerrisi, M., Toschi, N.: Echo State Network models for nonlinear Granger causality. bioRxiv, p. 651679 (2019)

    Google Scholar 

  21. Guo, T., Lin, T., Lu, Y.: An interpretable LSTM neural network for autoregressive exogenous model. ar**v preprint ar**v:1804.05251 (2018)

  22. Tank, A., et al.: Neural granger causality for nonlinear time series. ar**v preprint ar**v:1802.05842 (2018)

  23. Nauta, M., Bucur, D., Seifert, C.: Causal discovery with attention-based convolutional neural networks. Mach. Learn. Knowl. Extr. 1(1), 312–340 (2019)

    Article  Google Scholar 

  24. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  Google Scholar 

  25. Deng, L., Hutchinson, B., Yu, D.: Parallel training for deep stacking networks. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  26. Deng, L. Yu, D.: Deep convex net: a scalable architecture for speech pattern classification. In: Twelfth Annual Conference of the International Speech Communication Association (2011)

    Google Scholar 

  27. Van den Oord, A., et al.: Wavenet: A generative model for raw audio. ar**v preprint ar**v:1609.03499 (2016)

  28. Gourévitch, B., Le Bouquin-Jeannès, R., Faucon, G.: Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol. Cybern. 95(4), 349–369 (2006)

    Article  MathSciNet  Google Scholar 

  29. Hill, J.E., et al. A task-related and resting state realistic fMRI simulator for fMRI data validation. In: Medical Imaging 2017: Image Processing. 2017. International Society for Optics and Photonics (2017)

    Google Scholar 

  30. Carmichael, O., et al.: High-normal adolescent fasting plasma glucose is associated with poorer midlife brain health: Bogalusa Heart Study. J. Clin. Endocrinol. Metab. 104(10), 4492–4500 (2019)

    Article  Google Scholar 

  31. Glover, G.H., Li, T.Q., Ress, D.: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 44(1), 162–167 (2000)

    Article  Google Scholar 

  32. Sheu, L.K., Jennings, J.R., Gianaros, P.J.: Test–retest reliability of an fMRI paradigm for studies of cardiovascular reactivity. Psychophysiology 49(7), 873–884 (2012)

    Article  Google Scholar 

  33. Guido, W.: Development, form, and function of the mouse visual thalamus. J. Neurophysiol. 120(1), 211–225 (2018)

    Article  Google Scholar 

  34. Usrey, W.M., Alitto, H.J.: Visual functions of the thalamus. Ann. Rev. Vis. Sci. 1, 351–371 (2015)

    Article  Google Scholar 

  35. Roebroeck, A., Formisano, E., Goebel, R.: Map** directed influence over the brain using Granger causality and fMRI. Neuroimage 25(1), 230–242 (2005)

    Article  Google Scholar 

  36. Wang, X., et al.: Large-scale Granger causal brain network based on resting-state fMRI data. Neuroscience 425, 169–180 (2020)

    Article  Google Scholar 

  37. Blinowska, K.J., Kuś, R., Kamiński, M.: Granger causality and information flow in multivariate processes. Phys. Rev. E 70(5), 050902 (2004)

    Google Scholar 

  38. Roebroeck, A., Formisano, E., Goebel, R.: The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 58(2), 296–302 (2011)

    Article  Google Scholar 

  39. Deshpande, G., et al.: Multivariate Granger causality analysis of fMRI data. Hum. Brain Mapp. 30(4), 1361–1373 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by NIH grants R01AG041200 and R01AG062309 as well as the Pennington Biomedical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen T. Carmichael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuang, KC., Ramakrishnapillai, S., Bazzano, L., Carmichael, O.T. (2021). Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2021. Lecture Notes in Computer Science(), vol 13001. Springer, Cham. https://doi.org/10.1007/978-3-030-87586-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87586-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87585-5

  • Online ISBN: 978-3-030-87586-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation