Glutamate in Multiple Sclerosis: From Pathophysiology to Treatments

  • Chapter
  • First Online:
Glutamate and Neuropsychiatric Disorders

Abstract

Multiple sclerosis (MS) is an autoimmune disease typified by overt demyelination and inflammation that develop in selected regions of the central nervous system (CNS). Besides these signs, a diffuse loss of synaptic contacts, axonal pruning and astrocytosis are also observed, that in general correlate with the dysregulation of the glutamatergic system and with the onset of neurological symptoms. Concomitantly to the synaptic derangements, impaired glutamate homeostasis also dysregulates the immunocompetent responses, impairing the functional cross-talk between the immune system and the CNS. The study of the glutamatergic system therefore emerges as an important issue for deciphering the cellular events at the basis of MS as it would permit the proposal of new appropriate pharmacological interventions for the cure of the pathology. The chapter describes recent advances in basic research, preclinical and clinical studies concerning the impact of altered glutamate homeostasis in the course of the disease, as well as in the innovative strategies that would permit the restoration of central glutamatergic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-AG:

2-arachidonoylglycerol

2-PMPA:

2-(phosphonomethyl) pentanedioic acid

AC:

Adenylyl cyclase

CB1 receptors:

Cannabinoid receptors type 1

CNS:

Central nervous system

d.p.i.:

Days post immunization

DMDs:

Disease-modifying drugs

EAAT:

Excitatory amino acid transporter

EAE:

Experimental autoimmune encephalomyelitis

EC:

Endogenous cannabinoids

EPSCs:

Excitatory postsynaptic currents

FAAH:

Fatty acid amide hydrolase

GCPII:

Glutamate carboxypeptidase II

GDH:

Glutamate dehydrogenase

GLS:

Glutaminase

GOT:

Glutamate-oxaloacetate transaminase

GPT:

Glutamate-pyruvate transaminase

GS:

Glutamine synthase

HCAR2:

Hydroxycarboxylic acid receptor 2

IPSCs:

Inhibitory postsynaptic currents

IS:

Immune system

KA:

Kynurenic acid

KP:

Kynurenine pathway

LTD:

Long-term depression

LTP:

Long-term potentiation

MBP:

Myelin basic protein

MGL:

Monoacylglycerol lipase

mGlu receptor:

Metabotropic glutamate receptor

MOG:

Myelin oligodendrocyte glycoprotein

MS:

Multiple sclerosis

MUNC-18:

Mammalian uncoordinated-18

NAA:

N-acetyl-aspartate

NAALADase:

N-acetylated-alpha-linked acidic dipeptidase

PKA:

Protein kinase A

PLP:

Proteolipid protein

PPMS:

Primary progressive multiple sclerosis

QA:

Quinolinic acid

RMI:

Resonance imaging

RRMS:

Relapsing-remitting multiple sclerosis

SPMS:

Secondary progressive multiple sclerosis

T:

Tryptophan

TMS:

Transcranial magnetic stimulation

xCT:

Cystine/glutamate antiporter

References

  • Acharjee S, Nayani N, Tsutsui M et al (2013) Altered cognitive-emotional behavior in early experimental autoimmune encephalitis--cytokine and hormonal correlates. Brain Behav Immun 33:164–172

    Article  CAS  PubMed  Google Scholar 

  • Acharjee S, Verbeek M, Gomez CD et al (2018) Reduced Microglial activity and enhanced glutamate transmission in the basolateral amygdala in early CNS autoimmunity. J Neurosci 38:9019–9033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson WB, Gould MJ, Torres RD et al (2014) Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine inflammatory pain model. Neuropharmacology 81:224–230

    Article  CAS  PubMed  Google Scholar 

  • Azami Tameh A, Clarner T, Beyer C et al (2013) Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain. Ann Anat 195:415–423

    Article  PubMed  Google Scholar 

  • Azevedo CJ, Kornak J, Chu P et al (2014) In vivo evidence of glutamate toxicity in multiple sclerosis. Ann Neurol 76:269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannerman P, Horiuchi M, Feldman D et al (2007) GluR2-free alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors intensify demyelination in experimental autoimmune encephalomyelitis. J Neurochem 102:1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Basso AS, Frenkel D, Quintana FJ et al (2008) Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Invest 118:1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger UV, Carter RE, McKee M et al (1995) N-acetylated alpha-linked acidic dipeptidase is expressed by non-myelinating Schwann cells in the peripheral nervous system. J Neurocytol 24:99–109

    Article  CAS  PubMed  Google Scholar 

  • Bernal-Chico A, Canedo M, Manterola A et al (2015) Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelination in vivo. Glia 63:163–176

    Article  PubMed  Google Scholar 

  • Besong G, Battaglia G, D'Onofrio M et al (2002) Activation of group III metabotropic glutamate receptors inhibits the production of RANTES in glial cell cultures. J Neurosci 22:5403–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan RJ, Evans R, Griffiths L et al (2018) Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Ann Neurol 84:829–842

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton C, Paul C (2006) Glutamate receptors in neuroinflammatory demyelinating disease. Mediat Inflamm 2006:93684

    Article  CAS  Google Scholar 

  • Bonfiglio T, Olivero G, Merega E et al (2017) Prophylactic versus therapeutic fingolimod: restoration of presynaptic defects in mice suffering from experimental autoimmune encephalomyelitis. PLoS One 12(1):e0170825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonfiglio T, Olivero G, Vergassola M et al (2019) Environmental training is beneficial to clinical symptoms and cortical presynaptic defects in mice suffering from experimental autoimmune encephalomyelitis. Neuropharmacology 145:75–86

    Article  CAS  PubMed  Google Scholar 

  • Bonifácio MJ, Sousa F, Aires C et al (2020) Preclinical pharmacological evaluation of the fatty acid amide hydrolase inhibitor BIA 10-2474. Br J Pharmacol. https://doi.org/10.1111/bph.14973

  • Brindisi M, Maramai S, Gemma S et al (2016) Development and pharmacological characterization of selective blockers of 2-arachidonoyl glycerol degradation with efficacy in rodent models of multiple sclerosis and pain. J Med Chem 59:2612–2632

    Article  CAS  PubMed  Google Scholar 

  • Castegna A, Palmieri L, Spera I et al (2011) Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice with experimental allergic encephalomyelitis. Neurosci 185:97–105

    Article  CAS  Google Scholar 

  • Castillo J, Loza MI, Mirelman D et al (2016) A novel mechanism of neuroprotection: blood glutamate grabber. J Cereb Blood Flow Metab 36:292–301

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Bari M, Rossi S et al (2007) The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 130:2543–2553

    Article  PubMed  Google Scholar 

  • Centonze D, Muzio L, Rossi S et al (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29:3442–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanaday NL, Vilcaes AA, de Paul AL et al (2015) Glutamate release machinery is altered in the frontal cortex of rats with experimental autoimmune encephalomyelitis. Mol Neurobiol 51:1353–1367

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Shepherd JD, Okuno H et al (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52:445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cid MP, Vilcaes AA, Rupil LL et al (2011) Participation of the GABAergic system on the glutamate release of frontal cortex synaptosomes from Wistar rats with experimental autoimmune encephalomyelitis. Neuroscience 189:337–344

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Furness DN, Zhou Y (2016) Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int 98:29–45

    Article  CAS  PubMed  Google Scholar 

  • D'Antoni S, Berretta A, Bonaccorso CM et al (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res 33:2436–2443

    Article  CAS  PubMed  Google Scholar 

  • Di Filippo M, Chiasserini D, Gardoni F et al (2013) Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol Dis 52:229–236

    Article  PubMed  CAS  Google Scholar 

  • Di Filippo M, de Iure A, Durante V et al (2015) Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Brain Res 1621:205–213

    Article  PubMed  CAS  Google Scholar 

  • Di Prisco S, Merega E, Milanese M et al (2013) CCL5-glutamate interaction in central nervous system: early and acute presynaptic defects in EAE mice. Neuropharmacology 75:337–346

    Article  PubMed  CAS  Google Scholar 

  • Di Prisco S, Merega E, Lanfranco M et al (2014a) Acute desipramine restores presynaptic cortical defects in murine experimental autoimmune encephalomyelitis by suppressing central CCL5 overproduction. Br J Pharmacol 171:2457–2467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Prisco S, Merega E, Pittaluga A (2014b) Functional adaptation of presynaptic chemokine receptors in EAE mouse central nervous system. Synapse 68:529–535

    Article  PubMed  CAS  Google Scholar 

  • Di Prisco S, Merega E, Bonfiglio T et al (2016) Presynaptic, release-regulating mGlu2 -preferring and mGlu3 -preferring autoreceptors in CNS: pharmacological profiles and functional roles in demyelinating disease. Br J Pharmacol 173:1465–1477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunlop J (2006) Glutamate-based therapeutic approaches: targeting the glutamate transport system. Curr Opin Pharmacol 6:103–107

    Article  CAS  PubMed  Google Scholar 

  • Dutta R, Chomyk AM, Chang A et al (2013) Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann Neurol 73:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshaghi A, Marinescu RV, Young AL et al (2018) Progression of regional grey matter atrophy in multiple sclerosis. Brain 141:1665–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Evonuk KS, Doyle RE, Moseley CE et al (2020) Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv 6:eaax5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallarino F, Volpi C, Fazio F et al (2010) Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nat Med 16:897–902

    Article  CAS  PubMed  Google Scholar 

  • Fazio F, Notartomaso S, Aronica E et al (2008) Switch in the expression of mGlu1 and mGlu5 metabotropic glutamate receptors in the cerebellum of mice develo** experimental autoimmune encephalomyelitis and in autoptic cerebellar samples from patients with multiple sclerosis. Neuropharmacology 55:491–499

    Article  CAS  PubMed  Google Scholar 

  • Fazio F, Zappulla C, Notartomaso S et al (2014) Cinnabarinic acid, an endogenous agonist of type-4 metabotropic glutamate receptor, suppresses experimental autoimmune encephalomyelitis in mice. Neuropharmacology 81:237–843

    Article  CAS  PubMed  Google Scholar 

  • Fazio F, Ulivieri M, Volpi C et al (2018) Targeting metabotropic glutamate receptors for the treatment of neuroinflammation. Curr Opin Pharmacol 38:16–23

    Article  CAS  PubMed  Google Scholar 

  • Ganor Y, Besser M, Ben-Zakay N et al (2003) Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J Immunol 170:4362–4372

    Article  CAS  PubMed  Google Scholar 

  • Gentile A, Rossi S, Studer V et al (2013) Glatiramer acetate protects against inflammatory synaptopathy in experimental autoimmune encephalomyelitis. J NeuroImmune Pharmacol 8:651–663

    Article  PubMed  Google Scholar 

  • Gentile A, Musella A, De Vito F et al (2018) Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. J Neuroinflammation 15:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geurts JJ, Wolswijk G, Bö L et al (2003) Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 126:1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Geurts JJ, Wolswijk G, Bö L et al (2005) Expression patterns of Group III metabotropic glutamate receptors mGluR4 and mGluR8 in multiple sclerosis lesions. J Neuroimmunol 158:182–190

    Article  CAS  PubMed  Google Scholar 

  • Godiska R, Chantry D, Dietsch GN et al (1995) Chemokine expression in murine experimental allergic encephalomyelitis. J Neuroimmunol 58:167–176

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb M, Wang Y, Teichberg VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87:119–126

    Article  CAS  PubMed  Google Scholar 

  • Grasselli G, Rossi S, Musella A et al (2013) Abnormal NMDA receptor function exacerbates experimental autoimmune encephalomyelitis. Br J Pharmacol 168:502–517

    Article  CAS  PubMed  Google Scholar 

  • Haji N, Mandolesi G, Gentile A et al (2012) TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp Neurol 237:296–303

    Article  CAS  PubMed  Google Scholar 

  • Hanada T, Hashizume Y, Tokuhara N et al (2011) Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 52:1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Hardin-Pouzet H, Krakowski M, Bourbonnière L et al (1997) Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis. Glia 20:79–85

    Article  CAS  PubMed  Google Scholar 

  • Healy LM, Antel JP (2016) Sphingosine-1-phosphate receptors in the central nervous and immune systems. Curr Drug Targets 17:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Henley JM (2003) Proteins interactions implicated in AMPA receptor trafficking: a clear destination and an improving route map. Neurosci Res 45:243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Torres G, Cipriano M, Hedén E et al (2014) A reversible and selective inhibitor of monoacylglycerol lipase ameliorates multiple sclerosis. Angew Chem Int Ed Engl 126(50):13985–13990

    Article  Google Scholar 

  • Jackson PF, Cole DC, Slusher BS et al (1996) Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase. J Med Chem 39:619–622

    Article  CAS  PubMed  Google Scholar 

  • Jones OD (2017) Do group I metabotropic glutamate receptors mediate LTD? Neurobiol Learn Mem 138:85–97

    Article  CAS  PubMed  Google Scholar 

  • Kanwar JR, Kanwar RK, Krissansen GW (2004) Simultaneous neuroprotection and blockade of inflammation reverses autoimmune encephalomyelitis. Brain 127:1313–1331

    Article  PubMed  Google Scholar 

  • Karpus WJ, Ransohoff RM (1998) Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J Immunol 161:2667–2671

    CAS  PubMed  Google Scholar 

  • Kim DJ, Thayer SA (2000) Activation of CB1 cannabinoid receptors inhibits neurotransmitter release from identified synaptic sites in rat hippocampal cultures. Brain Res 852:398–405

    Article  CAS  PubMed  Google Scholar 

  • Klaver R, De Vries HE, Schenk GJ et al (2013) Grey matter damage in multiple sclerosis: a pathology perspective. Prion 7:66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klivényi P, Kékesi K, Juhász G et al (1997) Amino acid concentrations in cerebrospinal fluid of patients with multiple sclerosis. Acta Neurol Scand 95:96–98

    Article  PubMed  Google Scholar 

  • Landi D, Vollaro S, Pellegrino G et al (2015) Oral fingolimod reduces glutamate-mediated intracortical excitability in relapsing-remitting multiple sclerosis. Clin Neurophysiol 126:165–169

    Article  CAS  PubMed  Google Scholar 

  • Levite M (2017) Glutamate, T cells and multiple sclerosis. J Neural Transm 124:775–798

    Article  CAS  PubMed  Google Scholar 

  • Lim CK, Bilgin A, Lovejoy DB et al (2017) Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci Rep 7:41473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lourbopoulos A, Grigoriadis N, Lagoudaki R et al (2011) Administration of 2-arachidonoylglycerol ameliorates both acute and chronic experimental autoimmune encephalomyelitis. Brain Res 1390:126–141

    Article  CAS  PubMed  Google Scholar 

  • Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83:278–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Luchtman D, Gollan R, Ellwardt E et al (2016) In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity. J Neurochem 136:971–980

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  • Mandolesi G, Grasselli G, Musumeci G et al (2010) Cognitive deficits in experimental autoimmune encephalomyelitis: neuroinflammation and synaptic degeneration. Neurol Sci 31:S255–S259

    Article  CAS  PubMed  Google Scholar 

  • Mandolesi G, Musella A, Gentile A et al (2013) Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 33:12105–12121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandolesi G, Gentile A, Musella A et al (2015a) IL-1β dependent cerebellar synaptopathy in a mouse mode of multiple sclerosis. Cerebellum 14:19–22

    Article  CAS  PubMed  Google Scholar 

  • Mandolesi G, Gentile A, Musella A et al (2015b) Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 11:711–724

    Article  CAS  PubMed  Google Scholar 

  • Mangiardi M, Crawford DK, **a X et al (2011) An animal model of cortical and callosal pathology in multiple sclerosis. Brain Pathol 21:263–278

    Article  PubMed  Google Scholar 

  • Manterola A, Bernal-Chico A, Cipriani R et al (2018) Re-examining the potential of targeting ABHD6 in multiple sclerosis: Efficacy of systemic and peripherally restricted inhibitors in experimental autoimmune encephalomyelitis. Neuropharmacology 141:181–191

    Article  CAS  PubMed  Google Scholar 

  • Marte A, Cavallero A, Morando S et al (2010) Alterations of glutamate release in the spinal cord of mice with experimental autoimmune encephalomyelis. J Neurochem 115:343–352

    Article  CAS  PubMed  Google Scholar 

  • Matute C, Domercq M, Fogarty DJ et al (1999) On how altered glutamate homeostasis may contribute to demyelinating diseases of the CNS. Adv Exp Med Biol 468:97–107

    CAS  PubMed  Google Scholar 

  • Matute C, Alberdi E, Domercq M et al (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230

    Article  CAS  PubMed  Google Scholar 

  • Melzer N, Meuth SG, Torres-Salazar D et al (2008) A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis. PLoS One 3(9):e3149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitosek-Szewczyk K, Sulkowski G, Stelmasiak Z et al (2008) Expression of glutamate transporters GLT-1 and GLAST in different regions of rat brain during the course of experimental autoimmune encephalomyelitis. Neuroscience 155:45–52

    Article  CAS  PubMed  Google Scholar 

  • Mori F, Nicoletti CG, Rossi S et al (2014) Growth factors and synaptic plasticity in relapsing-remitting multiple sclerosis. NeuroMolecular Med 16:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mosayebi G, Soleyman MR, Khalili M et al (2016) Changes in synaptic transmission and long-term potentiation induction as a possible mechanism for learning disability in an animal model of multiple sclerosis. Int Neurourol J 20:26–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967–975

    Article  CAS  PubMed  Google Scholar 

  • Musella A, Sepman H, Mandolesi G et al (2014) Pre- and postsynaptic type-1 cannabinoid receptors control the alterations of glutamate transmission in experimental autoimmune encephalomyelitis. Neuropharmacology 79:567–572

    Article  CAS  PubMed  Google Scholar 

  • Musumeci G, Grasselli G, Rossi S et al (2011) Transient receptor potential vanilloid 1 channels modulate the synaptic effects of TNF-α and of IL-1β in experimental autoimmune encephalomyelitis. Neurobiol Dis 43:669–677

    Article  CAS  PubMed  Google Scholar 

  • Neuhofer D, Spencer SM, Chioma VC et al (2019) The loss of NMDAR-dependent LTD following cannabinoid self-administration is restored by positive allosteric modulation of CB1 receptors. Addict Biol 16:e12843

    Google Scholar 

  • Newcombe J, Uddin A, Dove R et al (2008) Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 18:52–61

    Article  PubMed  Google Scholar 

  • Nicoletti F, Bockaert J, Collingridge GL et al (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041

    Article  CAS  PubMed  Google Scholar 

  • Nisticò R, Mori F, Feligioni M et al (2013) Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis. Philos Trans R Soc Lond Ser B Biol Sci 369:20130162

    Article  CAS  Google Scholar 

  • Novkovic T, Shchyglo O, Gold R et al (2015) Hippocampal function is compromised in an animal model of multiple sclerosis. Neuroscience 309:100–112

    Article  CAS  PubMed  Google Scholar 

  • Ohgoh M, Hanada T, Smith T et al (2002) Altered expression of glutamate transporters in experimental autoimmune encephalomyelitis. J Neuroimmunol 125:170–178

    Article  CAS  PubMed  Google Scholar 

  • Olechowski CJ, Tenorio G, Sauve Y et al (2013) Changes in nociceptive sensitivity and object recognition in experimental autoimmune encephalomyelitis (EAE). Exp Neurol 241:113–121

    Article  CAS  PubMed  Google Scholar 

  • Olivero G, Vergassola M, Cisani F et al (2019) Presynaptic release-regulating metabotropic glutamate receptors: an update. Curr Neuropharmacol. https://doi.org/10.2174/1570159X17666191127112339

  • Pampliega O, Domercq M, Villoslada P et al (2008) Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol 195:194–198

    Article  CAS  PubMed  Google Scholar 

  • Pampliega O, Domercq M, Soria FN et al (2011) Increased expression of cystine/glutamate antiporter in multiple sclerosis. J Neuroinflammation 8:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar JR, Forrest BD, Freeman RA (2016) Medical marijuana patient counseling points for health care professionals based on trends in the medical uses, efficacy, and adverse effects of cannabis-based pharmaceutical drugs. Res Social Adm Pharm 12(4):638–654

    Article  PubMed  Google Scholar 

  • Parodi B, Rossi S, Morando S et al (2015) Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathol 130:279–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passos J, Azevedo A, Salgado D et al (2014) Three decades of drift: the misdiagnosis of predominantly neuropsychiatric multiple sclerosis. J Neuropsychiatry Clin Neurosci 26:E55–E56

    Article  PubMed  Google Scholar 

  • Peyro Saint Paul L, Creveuil C, Heinzlef O et al (2016) Efficacy and safety profile of memantine in patients with cognitive impairment in multiple sclerosis: A randomized, placebo-controlled study. J Neurol Sci 363:69–76

    Article  PubMed  CAS  Google Scholar 

  • Pin JP, Acher F (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord 1:297–317

    Article  CAS  PubMed  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    Article  CAS  PubMed  Google Scholar 

  • Pittaluga A (2016) Presynaptic release-regulating mGlu1 receptors in central nervous system. Front Pharmacol 7:295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pittaluga A (2017) CCL5-glutamate cross-talk in astrocyte-neuron communication in multiple sclerosis. Front Immunol 8:1079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pittaluga A, Feligioni M, Longordo F et al (2006) Trafficking of presynaptic AMPA receptors mediating neurotransmitter release: neuronal selectivity and relationships with sensitivity to cyclothiazide. Neuropharmacology 50:286–296

    Article  CAS  PubMed  Google Scholar 

  • Prochnow N, Gold R, Haghikia A (2013) An electrophysiologic approach to quantify impaired synaptic transmission and plasticity in experimental autoimmune encephalomyelitis. J Neuroimmunol 264:48–53

    Article  CAS  PubMed  Google Scholar 

  • Pryce G, Ahmed Z, Hankey DJ et al (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126:2191–2202

    Article  PubMed  Google Scholar 

  • Pryce G, Riddall DR, Selwood DL et al (2015) Neuroprotection in experimental autoimmune encephalomyelitis and progressive multiple sclerosis by cannabis-based cannabinoids. J Neuroimmune Pharmacol 10:281–292

    Article  PubMed  Google Scholar 

  • Rahn KA, Watkins CC, Alt J et al (2012) Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proc Natl Acad Sci U S A 109:20101–20106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raiteri M (2008) Presynaptic metabotropic glutamate and GABAB receptors. Handb Exp Pharmacol 184:373–407

    Article  CAS  Google Scholar 

  • Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 45:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransohoff RM, Liu L, Cardona AE (2007) Chemokines and chemokine receptors: multipurpose players in neuroinflammation. Int Rev Neurobiol 82:187–204

    Article  CAS  PubMed  Google Scholar 

  • Rao SM, Leo GJ, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 41:685–691

    Article  CAS  PubMed  Google Scholar 

  • Raphael I, Webb J, Gomez-Rivera F et al (2017) Serum neuroinflammatory disease-induced central nervous system proteins predict clinical onset of experimental autoimmune encephalomyelitis. Front Immunol 8:812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossi S, De Chiara V, Furlan R et al (2010) Abnormal activity of the Na/Ca exchanger enhances glutamate transmission in experimental autoimmune encephalomyelitis. Brain Behav Immun 24:1379–1385

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Furlan R, De Chiara V et al (2011) Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. Brain Behav Immun 25:1242–1248

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Lo Giudice T, De Chiara V et al (2012) Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis. Br J Pharmacol 165:861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Motta C, Studer V et al (2014) Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler 20:304–312

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Motta C, Musella A et al (2015) The interplay between inflammatory cytokines and the endocannabinoid system in the regulation of synaptic transmission. Neuropharmacology 96:105–112

    Article  CAS  PubMed  Google Scholar 

  • Rostène W, Kitabgi P, Parsadaniantz SM (2007) Chemokines: a new class of neuromodulator? Nat Rev Neurosci 8:895–903

    Article  PubMed  CAS  Google Scholar 

  • Sacha P, Zamecnik J, Barinka C et al (2007) Expression of glutamate carboxypeptidase II in human brain. Neuroscience 144(4):1361–1372

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Zavaleta R, Cortés H, Avalos-Fuentes JA et al (2018) Presynaptic cannabinoid CB2 receptors modulate [3 H]-Glutamate release at subthalamo-nigral terminals of the rat. Synapse 72:e22061

    Article  PubMed  CAS  Google Scholar 

  • Sarchielli P, Greco L, Floridi A et al (2003) Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch Neurol 60:1082–1088

    Article  PubMed  Google Scholar 

  • Sarchielli P, Di Filippo M, Candeliere A et al (2007) Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. J Neuroimmunol 188:146–158

    Article  CAS  PubMed  Google Scholar 

  • Siegert RJ, Abernethy DA (2005) Depression in multiple sclerosis: a review. J Neurol Neurosurg Psychiatry 76:469–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith T, Groom A, Zhu B et al (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66

    Article  CAS  PubMed  Google Scholar 

  • Sørensen TL, Tani M, Jensen J et al (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815

    Article  PubMed  PubMed Central  Google Scholar 

  • Soria FN, Zabala A, Pampliega O et al (2016) Cystine/glutamate antiporter blockage induces myelin degeneration. Glia 64:1381–1395

    Article  PubMed  Google Scholar 

  • Spampinato SF, Merlo S, Chisari M et al (2015) Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes. Front Cell Neurosci 8:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Spampinato SF, Copani A, Nicoletti F et al (2018) Metabotropic glutamate receptors in glial cells: a new potential target for neuroprotection? Front Mol Neurosci 11:414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stampanoni Bassi M, Mori F, Buttari F et al (2017) Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol 128:1148–1157

    Article  PubMed  Google Scholar 

  • Starck M, Albrecht H, Pollmann W et al (1997) Drug therapy for acquired pendular nystagmus in multiple sclerosis. J Neurol 244:9–16

    Article  CAS  PubMed  Google Scholar 

  • Stover JF, Pleines UE, Morganti-Kossmann MC et al (1997) Neurotransmitters in cerebrospinal fluid reflect pathological activity. Eur J Clin Investig 27(12):1038–1043

    Article  CAS  Google Scholar 

  • Sulkowski G, Dabrowska-Bouta B, Kwiatkowska-Patzer B et al (2009) Alterations in glutamate transport and group I metabotropic glutamate receptors in the rat brain during acute phase of experimental autoimmune encephalomyelitis. Folia Neuropathol 47:329–337

    CAS  PubMed  Google Scholar 

  • Swanborg RH (1995) Experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease. Clin Immunol Immunopathol 77:4–13

    Article  CAS  PubMed  Google Scholar 

  • University of California, San Francisco MS-EPIC Team, Cree BAC et al (2019) Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol 85:653–666

    Article  Google Scholar 

  • Vallejo-Illarramendi A, Domercq M, Pérez-Cerdá F et al (2006) Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 21:154–164

    Article  CAS  PubMed  Google Scholar 

  • Vilcaes AA, Furlan G, Roth GA (2009) Inhibition of Ca2+-dependent glutamate release from cerebral cortex synaptosomes of rats with experimental autoimmune encephalomyelitis. J Neurochem 108:881–890

    Article  CAS  PubMed  Google Scholar 

  • Wallström E, Diener P, Ljungdahl A et al (1996) Memantine abrogates neurological deficits, but not CNS inflammation, in Lewis rat experimental autoimmune encephalomyelitis. J Neurol Sci 137:89–96

    Article  PubMed  Google Scholar 

  • Weiss S, Mori F, Rossi S et al (2014) Disability in multiple sclerosis: when synaptic long-term potentiation fails. Neurosci Biobehav Rev 43:88–99

    Article  PubMed  Google Scholar 

  • Werner P, Pitt D, Raine CS (2000) Glutamate excitotoxicity--a mechanism for axonal damage and oligodendrocyte death in multiple sclerosis? J Neural Transm Suppl 60:375–385

    Google Scholar 

  • Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50:169–180

    Article  CAS  PubMed  Google Scholar 

  • Zhumadilov A, Boyko M, Gruenbaum SE et al (2015) Extracorporeal methods of blood glutamate scavenging: a novel therapeutic modality. Expert Rev Neurother 15:501–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziehn MO, Avedisian AA, Dervin SM et al (2012) Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J Neurosci 32:12312–12324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Suggested Reading

  • Bolton C, Paul C (2006) Glutamate receptors in neuroinflammatory demyelinating disease. Mediat Inflamm 2006:93684. The review considers the relevance of the glutamate receptors in EAE and MS pathogenesis, focussing particularly on the ionotropic receptors. The use of receptor antagonists/ receptor modulators to control EAE is also discussed together with the possibility of their therapeutic application in demyelinating disease

    Article  CAS  Google Scholar 

  • Klaver R, De Vries HE, Schenk GJ et al (2013) Grey matter damage in multiple sclerosis: a pathology perspective. Prion 7:66–75. Starting from evidence obtained in the last decade from immunohistochemical studies showing that grey matter (GM) pathology in multiple sclerosis is extensive, the authors focussed on the results obtained in the last decade with magnetic resonance imaging technique which unveiled the GM damage is present from the earliest stages of the disease and accrues with disease progression. These observations support the conclusion that GM pathology is clinically relevant as it correlates with multiple sclerosis associated motor deficits and cognitive impairment

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandolesi G, Gentile A, Musella A et al (2015) Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 11:711–724. The review resumes the work of the group headed by Diego Centonze concerning the role of synaptic alterations in the onset and the development of multiple sclerosis. Based on the observations supporting the pathological impact of proinflammatory cytokine on synaptic efficiency, including the glutamate-GABA cross-talk, the authors propose the term synaptopathy to describe the complex interaction linking the immune system and the CNS in the course of the disease

    Article  CAS  PubMed  Google Scholar 

  • Di Filippo M, de Iure A, Durante V et al (2015) Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Brain Res 1621:205–213. Starting from the concept that synaptic plasticity assures the ability of the CNS to cope with injuries in an adaptive or maladaptive manner, the authors discuss the impact of peripheral and central inflammation on neuroplasticity in the course of multiple sclerosis from this point of view. By reviewing the available literature concerning the synaptic derangements in the course of the experimental autoimmune encephalomyelitis in mice, the review aims at deciphering the complex pathways involved in the progression of the disease, discussing their relevance to clinical outcomes

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC, Furness DN, Zhou Y (2016) Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int 98:29–45. The review deals with excitatory amino acid transporters (EAATs) in the central nervous system, particularly focussing on the transporters that are expressed in neurons and in astrocytes, on their role in controlling glutamate bioavailability and their main regional and cellular distribution. The manuscript tackles with emphasis the role of EAAT on the glutamate-glutamine cycle as well as on the mechanism of heteroexchange compared to net uptake. Finally, the review also discusses the role of EAAT in controlling glutamate releasing probability

    Article  CAS  PubMed  Google Scholar 

  • Levite M (2017) Glutamate, T cells and multiple sclerosis. J Neural Transm 124:775–798. The review offers a wide overview of the involvement of the glutamatergic system in the onset and the development of demyelinating disorders, particularly focusing on the pathological cross-talk linking glutamate and immune system. This is an interesting review that describes item by item the literature available on the events accounting for glutamatergic derangements in MS

    Article  CAS  PubMed  Google Scholar 

  • Stampanoni Bassi M, Mori F, Buttari F et al (2017) Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol 128:1148–1157. The review focusses on the pathological relevance of the cross-talk linking the central nervous system and the immune system in the development and the progression of multiple sclerosis starting from the results from animal models to the clinical studies supporting the functional link between alterations of central transmission in MS patients in relation to different phenotypes and disease phases. The review also deals with explorative studies on neuronal plasticity in MS patients using the transcranial magnetic stimulation. Emphasis is dedicated to the pathological overproduction of proinflammatory cytokines and chemokines and neuronal survival and neurological manifestations in MS patients, owing to support the main involvement of inflammatory-driven, synaptic dysfunctions in the development of MS

    Article  PubMed  Google Scholar 

  • Fazio F, Ulivieri M, Volpi C et al (2018) Targeting metabotropic glutamate receptors for the treatment of neuroinflammation. Curr Opin Pharmacol 38:16–23. The review provides a synthetic and current overview of the role and the involvement of metabotropic glutamate receptors in the onset and development of demyelinating disorders in animals as well as in MS patients

    Article  CAS  PubMed  Google Scholar 

  • University of California, San Francisco MS-EPIC Team, Cree BAC et al (2019) Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol 85:653–666. Based on clinical data the authors introduce the term “silent progression” to describe the insidious disability that accrues in many patients who satisfy traditional criteria for relapsing–remitting MS. In particular the authors provide evidence that the silent progression during the RRMS phase is associated with brain atrophy suggesting that the same process that underlies SPMS likely begins far earlier than is generally recognized. This conclusion supports a unitary view of MS biology, with both focal and diffuse tissue destructive components, and with inflammation and neurodegeneration occurring throughout the disease spectrum playing a role in the disease development

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pittaluga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pittaluga, A., Olivero, G. (2022). Glutamate in Multiple Sclerosis: From Pathophysiology to Treatments. In: Pavlovic, Z.M. (eds) Glutamate and Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-87480-3_15

Download citation

Publish with us

Policies and ethics

Navigation