Viscoelastic Hemostatic Tests and Fibrinogen Concentrations in Trauma

  • Living reference work entry
  • First Online:
Biomarkers in Trauma, Injury and Critical Care

Abstract

Thrombelastography (TEG) and rotational thromboelastometry (ROTEM) are used to diagnose trauma-induced coagulopathy, fibrinogen deficiency, and guide fibrinogen transfusion in trauma, as well as to study the hemostatic effect of fibrinogen supplementation. We reviewed the clinical applications of TEG and ROTEM focusing on two functional fibrinogen (FF) tests, TEG FF and ROTEM FIBTEM, for assessing and guiding fibrinogen replacement in trauma patients. ROTEM FIBTEM, the standard FF test, measures clot amplitude. In contrast, while TEG FF, which is considered the standard FF test, also measures clot amplitude, other TEG tests, e.g., kaolin and rapid TEG, measure several coagulation parameters (maximum amplitude, K value, and angle α) to assess FF. Some confounding factors (e.g., hematocrit, factor XIII, and resuscitation fluids) need to be considered when interpreting the hemostatic effect of fibrinogen replacement measured by TEG and ROTEM. Different cutoff values for TEG and ROTEM parameters, particularly for maximum clot firmness (MCF) in FIBTEM, have been used for fibrinogen replacement. The dosage of fibrinogen replacement can be calculated based on the desired increment in the FIBTEM MCF or plasma fibrinogen level. In addition, we compared the clinical performance of the two FF test systems; the results were correlated but not interchangeable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACT:

Activated clotting time

CAs:

Clot amplitudes

CCTs:

Conventional coagulation tests

CFT:

Clot formation time

CL30:

Clot amplitude at 30 min after MA relative to MA

CT:

Coagulation time

ELISA:

Enzyme-linked immunosorbent assay

FC:

Fibrinogen concentrate

FF:

Functional fibrinogen

FFP:

Fresh frozen plasma

INR:

International normalized ratio

K:

Kinetic time

LI30:

Lysis index at 30 min after CT

LY30:

Clot lysis at 30 min after MA

MA:

Maximum amplitude

MCF:

Maximum clot firmness

PT:

Prothrombin time

PTT:

Partial thromboplastin time

R:

Reaction time

RBC:

Red blood cells

ROTEM:

Rotational thromboelastometry

SLT:

Standard laboratory test

TEG:

Thrombelastography

TIC:

Trauma-inducted coagulopathy

References

  • Asmis LM. Coagulation factor concentrates. In: Marcucci CE, Schoettker P, editors. Perioperative hemostasis: coagulation for anesthesiologists. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 177–204.

    Chapter  Google Scholar 

  • Agarwal S, Johnson RI, Shaw M. A comparison of fibrinogen measurement using TEG® functional fibrinogen and Clauss in cardiac surgery patients. Int J Lab Hematol. 2014:1–7.

    Google Scholar 

  • Baksaas-Aasen K, Gall LS, Stensballe J, et al. Viscoelastic haemostatic assay augmented protocols for major trauma haemorrhage (ITACTIC): a randomized, controlled trial. Intensive Care Med. 2021;47(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj V, Malhotra P, Hasija S, et al. Coagulopathies in cyanotic cardiac patients: an analysis with three point-of-care testing devices (thromboelastography, rotational thromboelastometry, and sonoclot analyzer). Ann Cardiac Anaesth. 2017;20(2):212–8.

    Article  Google Scholar 

  • Blaine KP, Steurer MP. Viscoelastic monitoring to guide the correction of perioperative coagulopathy and massive transfusion in patients with life-threatening hemorrhage. Anesthesiol Clin. 2019;37(1):51–66.

    Article  PubMed  Google Scholar 

  • Blasi A, Beltran J, Pereira A, et al. An assessment of thromboelastometry to monitor blood coagulation and guide transfusion support in liver transplantation. Transfusion (Paris). 2012;52(9):1989–98.

    Article  Google Scholar 

  • Branco BC, Inaba K, Ives C, et al. Thromboelastogram evaluation of the impact of hypercoagulability in trauma patients. Shock. 2014;41(3):200–7.

    Article  PubMed  Google Scholar 

  • Brazzel C. Thromboelastography-guided transfusion therapy in the trauma patient. AANA J. 2013;81(2):127–32.

    PubMed  Google Scholar 

  • Brenni M, Worn M, Brüesch M, et al. Successful rotational thromboelastometry-guided treatment of traumatic haemorrhage, hyperfibrinolysis and coagulopathy. Acta Anaesthesiol Scand. 2010;54(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  • Carroll RC, Craft RM, Langdon RJ, et al. Early evaluation of acute traumatic coagulopathy by thrombelastography. Transl Res. 2009;154(1):34–9.

    Article  PubMed  Google Scholar 

  • Černý V, Maegele M, Agostini V, et al. Variations and obstacles in the use of coagulation factor concentrates for major trauma bleeding across Europe: outcomes from a European expert meeting. Eur J Trauma Emerg Surg. 2022;48:763–74.

    Google Scholar 

  • Chang R, Cardenas JC, Wade CE, et al. Advances in the understanding of trauma-induced coagulopathy. Blood. 2016;128(8):1043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow JH, Richards JE, Morrison JJ, et al. Viscoelastic signals for optimal resuscitation in trauma: kaolin thrombelastography cutoffs for diagnosing hypofibrinogenemia (visor study). Anesth Analg. 2019;129(6):1482–91.

    Article  CAS  PubMed  Google Scholar 

  • Coakley M, Reddy K, Mackie I, Mallett S. Transfusion triggers in orthotopic liver transplantation: A comparison of the thromboelastometry analyzer, the thromboelastogram, and conventional coagulation tests. J Cardiothorac Vasc Anesth. 2006;20:548–53.

    Google Scholar 

  • Cohen MJ, West M. Acute traumatic coagulopathy: from endogenous acute coagulopathy to systemic acquired coagulopathy and back. J Trauma Acute Care Surg. 2011;70(5):S47–9.

    Article  Google Scholar 

  • Cohen MJ, Kutcher M, Redick B, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75(1 Suppl 1):S40–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen J, Scorer T, Wright Z, et al. A prospective evaluation of thromboelastometry (ROTEM) to identify acute traumatic coagulopathy and predict massive transfusion in military trauma patients in Afghanistan. Transfusion (Paris). 2019;59(S2):1601–7.

    Article  Google Scholar 

  • Curry N, Rourke C, Davenport R, et al. Early cryoprecipitate for major haemorrhage in trauma: a randomised controlled feasibility trial. Br J Anaesth. 2015;115(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  • Cushing MM, Haas T. Fibrinogen concentrate for perioperative bleeding: what can we learn from the clinical trials? Transfusion (Paris). 2019;59(11):3295–7.

    Article  CAS  Google Scholar 

  • Danés AF, Cuenca LG, Bueno SR, et al. Efficacy and tolerability of human fibrinogen concentrate administration to patients with acquired fibrinogen deficiency and active or in high-risk severe bleeding. Vox Sang. 2008;94(3):221–6.

    Article  PubMed  CAS  Google Scholar 

  • Davenport RA, Brohi K. Cause of trauma-induced coagulopathy. Curr Opin Anesthesiol. 2015;29(2):212–9.

    Article  CAS  Google Scholar 

  • Davenport R, Manson J, DeAth H, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • David J-S, Durand M, Levrat A, et al. Correlation between laboratory coagulation testing and thromboelastometry is modified during management of trauma patients. J Trauma. 2016;81(2):319–27.

    Article  CAS  Google Scholar 

  • De Pietri L, Ragusa F, Deleuterio A, et al. Reduced transfusion during OLT by POC coagulation management and TEG functional fibrinogen: a retrospective observational study. Transplant Direct. 2016;2(1):e49.

    Article  PubMed  Google Scholar 

  • Dias JD, Sauaia A, Achneck HE, et al. Thromboelastography-guided therapy improves patient blood management and certain clinical outcomes in elective cardiac and liver surgery and emergency resuscitation: a systematic review and analysis. J Thromb Haemost. 2019;17(6):984–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Djambas Khayat C, El Khorassani M, Lambert T, et al. Clinical pharmacology, efficacy and safety study of a triple-secured fibrinogen concentrate in adults and adolescent patients with congenital fibrinogen deficiency. J Thromb Haemost. 2019;17(4):635–44.

    Article  PubMed  Google Scholar 

  • Doran CM, Woolley T, Midwinter MJ. Feasibility of using rotational thromboelastometry to assess coagulation status of combat casualties in a deployed setting. J Trauma. 2010;69(Suppl. 1):S40–8.

    PubMed  Google Scholar 

  • Dötsch T, Dirkmann D, Bezinover D, et al. Assessment of standard laboratory tests and rotational thromboelastometry for the prediction of postoperative bleeding in liver transplantation. Br J Anaesth. 2017;119(3):402–10.

    Article  PubMed  CAS  Google Scholar 

  • Eastridge BJ, Mabry RL, Seguin P, et al. Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6):S431–7.

    Article  PubMed  Google Scholar 

  • Enriquez LJ, Shore-Lesserson L. Point-of-care coagulation testing and transfusion algorithms. Br J Anaesth. 2009;103:i14–i22.

    Google Scholar 

  • Fenger-Eriksen C, Anker-Møller E, Heslop J, et al. Thrombelastographic whole blood clot formation after ex vivo addition of plasma substitutes: improvements of the induced coagulopathy with fibrinogen concentrate. Br J Anaesth. 2005;94:324–9.

    Article  CAS  PubMed  Google Scholar 

  • Fenger-Eriksen C, Moore GW, Rangarajan S, et al. Fibrinogen estimates are influenced by methods of measurement and hemodilution with colloid plasma expanders. Transfusion (Paris). 2010;50(12):2571–6.

    Article  Google Scholar 

  • Ferrante EA, Blasier KR, Givens TB, et al. A novel device for the evaluation of hemostatic function in critical care settings. Anesth Analg. 2016;123(6):1372–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueiredo S, Tantot A, Duranteau J. Targeting blood products transfusion in trauma: what is the role of thromboelastography? Minerva Anestesiol. 2016;82(11):1214–29.

    PubMed  Google Scholar 

  • Fluger I, Maderová K, Šimek M, et al. The effect of a cardiopulmonary bypass system with biocompatible coating on fibrinogen levels determined by the TEG – functional fibrinogen method: preliminary results. Perfusion. 2011;26(6):503–9.

    Article  CAS  PubMed  Google Scholar 

  • Franchini M, Lippi G. Fibrinogen replacement therapy: a critical review of the literature. Blood Transfus. 2012;10(1):23–7.

    PubMed  PubMed Central  Google Scholar 

  • Fries D, Krismer A, Klingler A, et al. Effect of fibrinogen on reversal of dilutional coagulopathy: a porcine model. Br J Anaesth. 2005;95(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  • Fries D, Innerhofer P, Reif C, et al. The effect of fibrinogen substitution on reversal of dilutional coagulopathy: an in vitro model. Anesth Analg. 2006;102(2):347–51.

    Article  CAS  PubMed  Google Scholar 

  • Fries D, Innerhofer P, Schobersberger W. Time for changing coagulation management in trauma-related massive bleeding. Curr Opin Anaesthesiol. 2009;22(2):267–74.

    Article  PubMed  Google Scholar 

  • Frith D, Goslings J, Gaarder C, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost. 2010;8(9):1919–25.

    Article  CAS  PubMed  Google Scholar 

  • Ganter MT, Hofer CK. Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth Analg. 2008;106:1366–75.

    Article  PubMed  Google Scholar 

  • Gautam NK, Cai C, Pawelek O, et al. Performance of functional fibrinogen thromboelastography in children undergoing congenital heart surgery. Paediatr Anaesth. 2017;27(2):181–9.

    Article  PubMed  Google Scholar 

  • Gertler R, Wiesner G, Tassani-Prell P, et al. Are the point-of-care diagnostics multiplate and rotem valid in the setting of high concentrations of heparin and its reversal with protamine? J Cardiothorac Vasc Anesth. 2011;25(6):981–6.

    Article  CAS  PubMed  Google Scholar 

  • Goerlinger K. Coagulation management during liver transplantation. Hamostaseologie. 2006;26(6):64–75.

    Google Scholar 

  • Gonzalez E, Pieracci FM, Moore EE, et al. Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography. Semin Thromb Hemost. 2010;36(7):723–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez E, Moore EE, Moore HB, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016;263(6):1051–9.

    Article  PubMed  Google Scholar 

  • Görlinger K, Fries D, Dirkmann D, et al. Reduction of fresh frozen plasma requirements by perioperative point-of-care coagulation management with early calculated goal-directed therapy. Transfus Med Hemother. 2012;39(2):104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Görlinger K, Shore-Lesserson L, Dirkmann D, et al. Management of hemorrhage in cardiothoracic surgery. J Cardiothorac Vasc Anesth. 2013;27(4 Supplement):S20–34.

    Article  PubMed  Google Scholar 

  • Görlinger K, Iqbal J, Dirkmann D, Tanaka KA. Whole Blood Assay: Thromboelastometry. In: Teruya J, ed. Management of Bleeding Patients. Cham: Springer International Publishing, 2016:37–64.

    Google Scholar 

  • Grassetto A, Saggioro D, Caputo P, et al. Rotational thromboelastometry analysis and management of life-threatening haemorrhage in isolated craniofacial injury. Blood Coagul Fibrinolysis. 2012;23(6):551–5.

    Article  PubMed  Google Scholar 

  • Groves DS, Welsby IJ, Naik BI, et al. Multicenter evaluation of the quantra qplus system in adult patients undergoing major surgical procedures. Anesth Analg. 2020;130(4):899–909.

    Article  CAS  PubMed  Google Scholar 

  • Gurbel PA, Bliden KP, Tantry US, Monroe AL, Muresan AA, Brunner NE, et al. First report of the point-of-care TEG: A technical validation study of the TEG-6S system. Platelets. 2016;27:642–9.

    Google Scholar 

  • Haas T, Fries D, Tanaka KA, et al. Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: is there any evidence? Br J Anaesth. 2015;114(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  • Haas T, Cushing MM, Asmis LM. Comparison of the efficacy of two human fibrinogen concentrates to treat dilutional coagulopathy in vitro. Scand J Clin Lab Invest. 2018;78(3):230–5.

    Article  CAS  PubMed  Google Scholar 

  • Hagemo JS, Stanworth S, Juffermans NP, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care. 2014;18(2):R52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagemo JS, Christiaans SC, Stanworth SJ, et al. Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study. Crit Care. 2015;19(1):1–7.

    Article  Google Scholar 

  • Harr JN, Moore EE, Ghasabyan A, et al. Functional fibrinogen assay indicates that fibrinogen is critical in correcting abnormal clot strength following trauma. Shock. 2013;39(1):45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harr JN, Moore EE, Chin TL, et al. Postinjury hyperfibrinogenemia compromises efficacy of heparin-based venous thromboembolism prophylaxis. Shock. 2014;41(1):33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann J, Walsh M, Grisoli A, et al. Diagnosis and treatment of trauma-induced coagulopathy by viscoelastography. Semin Thromb Hemost. 2020a;46(2):134–46.

    Article  PubMed  Google Scholar 

  • Hartmann J, Murphy M, Dias JD. Viscoelastic hemostatic assays: moving from the laboratory to the site of care—a review of established and emerging technologies. Diagnostics. 2020b;10(2):118.

    Article  CAS  PubMed Central  Google Scholar 

  • Hayakawa M, Gando S, Ono Y, et al. Fibrinogen level deteriorates before other routine coagulation parameters and massive transfusion in the early phase of severe trauma: a retrospective observational study. Semin Thromb Hemost. 2015;41(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  • Hess JR, Brohi K, Dutton RP, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma Acute Care Surg. 2008;65(4):748–54.

    Article  CAS  Google Scholar 

  • Holcomb JB, Minei KM, Scerbo ML, et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients. Ann Surg. 2012;256(3):476–86.

    Article  PubMed  Google Scholar 

  • Innerhofer P, Westermann I, Tauber H, et al. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury. 2013;44(2):209–16.

    Article  PubMed  Google Scholar 

  • Innerhofer P, Fries D, Mittermayr M, et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017;4(6):e258–71.

    Article  PubMed  Google Scholar 

  • Jeger V, Zimmermann H, Exadaktylos AK. Can RAPIDTEG accelerate the search for coagulopathies in the patient with multiple injuries? J Trauma. 2009;66(4):1253–7.

    CAS  PubMed  Google Scholar 

  • Jeong SM, Song JG, Seo H, et al. Quantification of both platelet count and fibrinogen concentration using maximal clot firmness of thromboelastometry during liver transplantation. Transplant Proc. 2015;47(6):1890–5.

    Article  CAS  PubMed  Google Scholar 

  • Johansson PI, Stensballe J. Effect of haemostatic control resuscitation on mortality in massively bleeding patients: a before and after study. Vox Sang. 2009;96(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  • Johansson PI, Ostrowski SR, Secher NH. Management of major blood loss: an update. Acta Anaesthesiol Scand. 2010;54(9):1039–49.

    Article  CAS  PubMed  Google Scholar 

  • Johansson PI, Sørensen AM, Larsen CF, et al. Low hemorrhage-related mortality in trauma patients in a level I trauma center employing transfusion packages and early thromboelastography-directed hemostatic resuscitation with plasma and platelets. Transfusion (Paris). 2013;53(12):3088–99.

    Article  CAS  Google Scholar 

  • Johansson PI, Stensballe J, Oliveri R, et al. How i treat patients with massive hemorrhage. Blood. 2014;124(20):3052–8.

    Article  CAS  PubMed  Google Scholar 

  • Juffermans NP, Wirtz MR, Balvers K, et al. Towards patient-specific management of trauma hemorrhage: the effect of resuscitation therapy on parameters of thromboelastometry. J Thromb Haemost. 2019;17(3):441–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalina U, Stöhr H-A, Bickhard H, et al. Rotational thromboelastography for monitoring of fibrinogen concentrate therapy in fibrinogen deficiency. Blood Coagul Fibrinolysis. 2008;19(8):777–83.

    Article  CAS  PubMed  Google Scholar 

  • Kashuk JL, Moore EE, Le T, et al. Noncitrated whole blood is optimal for evaluation of postinjury coagulopathy with point-of-care rapid thrombelastography. J Surg Res. 2009;156(1):133–8.

    Article  PubMed  Google Scholar 

  • Kashuk JL, Moore EE, Wohlauer M, et al. Initial experiences with point-of-care rapid thrombelastography for management of life-threatening postinjury coagulopathy. Transfusion (Paris). 2012;52(1):23–33.

    Article  Google Scholar 

  • Kaufmann CR, Dwyer KM, Crews JD, et al. Usefulness of thrombelastography in assessment of trauma patient coagulation. J Trauma. 1997;42(4):716–20.

    Article  CAS  PubMed  Google Scholar 

  • Kaufner L, Henkelmann A, von Heymann C, et al. Can prepartum thromboelastometry-derived parameters and fibrinogen levels really predict postpartum hemorrhage? J Perinat Med. 2016;45(4):427–35.

    Google Scholar 

  • Koh SC, Chew CY, Viegas OA, et al. Influence of circulating d-dimer levels on assays of fibrinogen. Ann Acad Med Singap. 1994;23(6):856–60.

    CAS  PubMed  Google Scholar 

  • Kornblith LZ, Kutcher ME, Redick BJ, et al. Fibrinogen and platelet contributions to clot formation: implications for trauma resuscitation and thromboprophylaxis. J Trauma. 2014;76(2):255–63.

    Article  CAS  Google Scholar 

  • Kozek-Langenecker SA, Ahmed AB, Afshari A, et al. Management of severe perioperative bleeding: guidelines from the European society of anaesthesiology: first update 2016. Eur J Anaesthesiol. 2017;34(6):332–95.

    Article  PubMed  Google Scholar 

  • Larsson A, Tynngård N, Kander T, et al. Comparison of point-of-care hemostatic assays, routine coagulation tests, and outcome scores in critically ill patients. J Crit Care. 2015;30(5):1032–8.

    Article  CAS  PubMed  Google Scholar 

  • Levrat A, Gros A, Rugeri L, et al. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth. 2008;100(6):792–7.

    Article  CAS  PubMed  Google Scholar 

  • Levy JH, Szlam F, Tanaka KA, et al. Fibrinogen and hemostasis: a primary hemostatic target for the management of acquired bleeding. Anesth Analg. 2012;114(2):261–74.

    Article  CAS  PubMed  Google Scholar 

  • Levy JH, Welsby I, Goodnough LT. Fibrinogen as a therapeutic target for bleeding: a review of critical levels and replacement therapy. Transfusion (Paris). 2014;54(5):1389–405.

    Article  CAS  Google Scholar 

  • Lier H, Vorweg M, Hanke A, et al. Thromboelastometry guided therapy of severe bleeding. Essener runde algorithm. Hämostaseologie. 2013;33(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  • Luddington RJ. Thrombelastography/thromboelastometry. Clin Lab Haem. 2005;27:81–90.

    Article  CAS  Google Scholar 

  • Mace H, Lightfoot N, McCluskey S, et al. Validity of thromboelastometry for rapid assessment of fibrinogen levels in heparinized samples during cardiac surgery: a retrospective, single-center, observational study. J Cardiothorac Vasc Anesth. 2016;30(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  • Mackie I, Lawrie A, Kitchen S, et al. A performance evaluation of commercial fibrinogen reference preparations and assays for clauss and pt-derived fibrinogen. Thromb Haemost. 2002;87(6):997–1005.

    Article  CAS  PubMed  Google Scholar 

  • Maegele M, Spinella PC, Schöchl H. The acute coagulopathy of trauma: mechanisms and tools for risk stratification. Shock. 2012;38(5):450–8.

    Article  PubMed  Google Scholar 

  • McCully SP, Fabricant LJ, Kunio NR, et al. The international normalized ratio overestimates coagulopathy in stable trauma and surgical patients. J Trauma Acute Care Surg. 2013;75(6):947–53.

    Article  PubMed  Google Scholar 

  • McNamara H, Mallaiah S, Barclay P, et al. Coagulopathy and placental abruption: changing management with ROTEM-guided fibrinogen concentrate therapy. Int J Obstet Anesth. 2015;24(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  • McQuilten ZK, Wood EM, Bailey M, et al. Fibrinogen is an independent predictor of mortality in major trauma patients: a five-year statewide cohort study. Injury. 2017a;48(5):1074–81.

    Article  PubMed  Google Scholar 

  • McQuilten ZK, Bailey M, Cameron PA, et al. Fibrinogen concentration and use of fibrinogen supplementation with cryoprecipitate in patients with critical bleeding receiving massive transfusion: a bi-national cohort study. Br J Haematol. 2017b;179(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  • Mengoli C, Franchini M, Marano G, et al. The use of fibrinogen concentrate for the management of trauma-related bleeding: a systematic review and meta-analysis. Blood Transfus. 2017;15(4):318–24.

    PubMed  PubMed Central  Google Scholar 

  • Meyer ASP, Meyer MAS, Sørensen AM, et al. Thrombelastography and rotational thromboelastometry early amplitudes in 182 trauma patients with clinical suspicion of severe injury. J Trauma Acute Care Surg. 2014;76(3):682–90.

    Article  PubMed  Google Scholar 

  • Meyer MAS, Ostrowski SR, Sørensen AM, et al. Fibrinogen in trauma, an evaluation of thrombelastography and rotational thromboelastometry fibrinogen assays. J Surg Res. 2015;194(2):581–90.

    Article  CAS  PubMed  Google Scholar 

  • Miceli A, Ranucci M, Glauber M. Fibrinogen concentrate as first-line hemostatic treatment for the management of bleeding in complex cardiac surgery. J Thorac Cardiovasc Surg. 2016;151(2):383–4.

    Article  PubMed  Google Scholar 

  • Mittermayr M, Streif W, Haas T, et al. Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg. 2007;105:905–17.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi Aria M, Erten A, Yalcin O. Technology advancements in blood coagulation measurements for point-of-care diagnostic testing. Front Bioeng Biotechnol. 2019;7:395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore EE, Moore HB, Kornblith LZ, et al. Trauma-induced coagulopathy. Nat Rev Dis Primers. 2021;7(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison GA, Chalmers RT, Solomon C, et al. Fibrinogen concentrate therapy guided by thromboelastometry as an alternative to fresh frozen plasma in major vascular surgery. J Cardiothorac Vasc Anesth. 2012;26(4):654–9.

    Article  PubMed  Google Scholar 

  • Nardi G, Agostini V, Rondinelli B, et al. Trauma-induced coagulopathy: impact of the early coagulation support protocol on blood product consumption, mortality and costs. Crit Care. 2015;19(1):1–10.

    Article  Google Scholar 

  • Nascimento B, Al Mahoos M, Callum J, et al. Vitamin k-dependent coagulation factor deficiency in trauma: a comparative analysis between international normalized ratio and thromboelastography (CME). Transfusion (Paris). 2012;52(1):7–13.

    Article  CAS  Google Scholar 

  • Nascimento B, Callum J, Tien H, et al. Fibrinogen in the initial resuscitation of severe trauma (fiirst): a randomized feasibility trial. Br J Anaesth. 2016;117(6):775–82.

    Article  CAS  PubMed  Google Scholar 

  • Neal MD, Moore HB, Moore EE, et al. Clinical assessment of trauma-induced coagulopathy and its contribution to postinjury mortality: a tactic proposal. J Trauma Acute Care Surg. 2015;79(3):490–2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neal MD, Moore EE, Walsh M, Thomas S, Callcut RA, Kornblith LZ, et al. A comparison between the TEG 6s and TEG 5000 analyzers to assess coagulation in trauma patients. J Trauma Acute Care Surg. 2020;88:279–85.

    Google Scholar 

  • Nielsen VG. Colloids decrease clot propagation and strength: role of factor xiii-fibrin polymer and thrombin–fibrinogen interactions. Acta Anaesthesiol Scand. 2005;49(8):1163–71.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen VG, Gurley WQ Jr, Burch TM. The impact of factor xiii on coagulation kinetics and clot strength determined by thrombelastography. Anesth Analg. 2004;99(1):120–3.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen VG, Cohen BM, Cohen E. Effects of coagulation factor deficiency on plasma coagulation kinetics determined via thrombelastography: critical roles of fibrinogen and factors ii, vii, x and xii. Acta Anaesthesiol Scand. 2005;49:222–31.

    Article  CAS  PubMed  Google Scholar 

  • Niles SE, McLaughlin DF, Perkins JG, et al. Increased mortality associated with the early coagulopathy of trauma in combat casualties. J Trauma Acute Care Surg. 2008;64(6):1459–65.

    Article  Google Scholar 

  • Notani N, Miyazaki M, Kanezaki S, et al. Fibrinogen level on admission is a predictive marker of the need for massive blood transfusion after pelvic fracture. Am J Emerg Med. 2020;38(4):789–93.

    Article  PubMed  Google Scholar 

  • Ogawa S, Szlam F, Bolliger D, et al. The impact of hematocrit on fibrin clot formation assessed by rotational thromboelastometry. Anesth Analg. 2012;115(1):16–21.

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski SR, Henriksen HH, Stensballe J, et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: a prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg. 2017;82(2):293–301.

    Article  PubMed  Google Scholar 

  • Park MS, Martini WZ, Dubick MA, et al. Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time. J Trauma. 2009;67(2):266–75.

    PubMed  PubMed Central  Google Scholar 

  • Peng HT, Nascimento B, and Beckett A (2018). Thromboelastography and thromboelastometry in assessment of fibrinogen deficiency and prediction for transfusion requirement: A descriptive review. BioMed Research International, 2018, Article ID 7020539.

    Google Scholar 

  • Peng HT, Nascimento B, Tien H, et al. A comparative analysis of functional fibrinogen assays using TEG and ROTEM in trauma patients enrolled in the first trial. Panam J Trauma Crit Care Emerg Surg. 2018;7(2):143–57.

    Article  Google Scholar 

  • Peng HT, Nascimento B, Tien H, et al. A comparative study of viscoelastic hemostatic assays and conventional coagulation tests in trauma patients receiving fibrinogen concentrate. Clin Chim Acta. 2019;495:253–62.

    Article  CAS  PubMed  Google Scholar 

  • Pezold M, Moore EE, Wohlauer M, et al. Viscoelastic clot strength predicts coagulation-related mortality within 15 minutes. Surgery. 2012;151(1):48–54.

    Article  PubMed  Google Scholar 

  • Ponschab M, Voelckel W, Pavelka M, et al. Effect of coagulation factor concentrate administration on ROTEM® parameters in major trauma. Scand J Trauma Resusc Emerg Med. 2015;23(1):1–7.

    Article  Google Scholar 

  • Ranucci M, Martinez B, Colella D, et al. In: Ranucci M, Simioni P, editors. Point-of-care tests for severe hemorrhage: a manual for diagnosis and treatment. Cham: Springer International Publishing; 2016.

    Chapter  Google Scholar 

  • Requena T, Koller T, Paniagua P, et al. Recommended thresholds for fibrinogen substitution (fs) in rotational thrombelastometry (ROTEM) subtest FIBTEM and conventional clauss method (cm) do not correspond: 6ap6-6. Eur J Anaesthesiol. 2011;28:95.

    Article  Google Scholar 

  • Rizoli SB, Scarpelini S, Callum J, et al. Clotting factor deficiency in early trauma-associated coagulopathy. J Trauma. 2011;71(5 Suppl 1):S427–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross C, Rangarajan S, Karimi M, et al. Pharmacokinetics, clot strength and safety of a new fibrinogen concentrate: randomized comparison with active control in congenital fibrinogen deficiency. J Thromb Haemost. 2018;16(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  • Rossaint R, Bouillon B, Cerny V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20(1):100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roullet S, Freyburger G, Cruc M, et al. Management of bleeding and transfusion during liver transplantation before and after the introduction of a rotational thromboelastometry-based algorithm. Liver Transplant. 2015;21(2):169–79.

    Article  Google Scholar 

  • Rourke C, Curry N, Khan S, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10(7):1342–51.

    Article  CAS  PubMed  Google Scholar 

  • Rugeri L, Levrat A, David JS, et al. Diagnosis of early coagulation abnormalities in trauma patients by rotation thrombelastography. J Thromb Haemost. 2007;5(2):289–95.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto Y, Koami H, Miike T. Monitoring the coagulation status of trauma patients with viscoelastic devices. J Intensive Care. 2017;5(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankarankutty A, Nascimento B, da Luz LT, Rizoli S. Teg® and rotem® in trauma: Similar test but different results? World J Emerg Surg. 2012;7:S3.

    Google Scholar 

  • Sawyer MM, Myers G, Humphrey J, et al. Trauma and thrombelastography: how changes in the understanding of coagulopathy, testing, and hospital systems have changed one group’s practice. Semin Cardiothorac Vasc Anesth. 2012;16(3):142–52.

    Article  PubMed  Google Scholar 

  • Schenk B, Görlinger K, Treml B, Tauber H, Fries D, Niederwanger C, et al. A comparison of the new ROTEM®sigma with its predecessor, the ROTEMdelta. Anaesthesia. 2019;74:348–56.

    Google Scholar 

  • Schlimp C, Schöchl H. The role of fibrinogen in trauma-induced coagulopathy. Hamostaseologie. 2014;34(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  • Schlimp CJ, Schochl H. The role of fibrinogen in trauma-induced coagulopathy. Hamostaseologie. 2014;34(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  • Schlimp CJ, Voelckel W, Inaba K, et al. Impact of fibrinogen concentrate alone or with prothrombin complex concentrate (+/−fresh frozen plasma) on plasma fibrinogen level and fibrin-based clot strength (FIBTEM) in major trauma: a retrospective study. Scand J Trauma Resusc Emerg Med. 2013a;21:74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlimp CJ, Cadamuro J, Solomon C, et al. The effect of fibrinogen concentrate and factor xiii on thromboelastometry in 33% diluted blood with albumin, gelatine, hydroxyethyl starch or saline in vitro. Blood Transfus. 2013b;11(4):510–7.

    PubMed  PubMed Central  Google Scholar 

  • Schlimp CJ, Solomon C, Ranucci M, et al. The effectiveness of different functional fibrinogen polymerization assays in eliminating platelet contribution to clot strength in thromboelastometry. Anesth Analg. 2014;118(2):269–76.

    Article  CAS  PubMed  Google Scholar 

  • Schlimp CJ, Ponschab M, Voelckel W, et al. Fibrinogen levels in trauma patients during the first seven days after fibrinogen concentrate therapy: a retrospective study. Scand J Trauma Res Emerg Med. 2016;24(1):1–11.

    Google Scholar 

  • Schöchl H, Voelckel W, Solomon C. Detection and impact of hyperfibrinolysis in trauma. Wien Klin Wochenschr. 2010a;122(Suppl. 5):S11–3.

    PubMed  Google Scholar 

  • Schöchl H, Nienaber U, Hofer G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM®)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010b;14(2):R55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schöchl H, Posch A, Hanke A, et al. High-dose fibrinogen concentrate for haemostatic therapy of a major trauma patient with recent clopidogrel and aspirin intake. Scand J Clin Lab Invest. 2010c;70(6):453–7.

    Article  PubMed  CAS  Google Scholar 

  • Schöchl H, Forster L, Woidke R, et al. Use of rotation thromboelastometry (ROTEM®) to achieve successful treatment of polytrauma with fibrinogen concentrate and prothrombin complex concentrate. Anaesthesia. 2010d;65(2):199–203.

    Article  PubMed  Google Scholar 

  • Schöchl H, Cotton B, Inaba K, et al. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care. 2011;15(6):R265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schochl H, Nienaber U, Maegele M, et al. Transfusion in trauma: Thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011;15(2):R83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schöchl H, Maegele M, Solomon C, et al. Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med. 2012;20(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schöchl H, Voelckel W, Grassetto A, et al. Practical application of point-of-care coagulation testing to guide treatment decisions in trauma. J Trauma Acute Care Surg. 2013a;74(6):1587–98.

    Article  PubMed  Google Scholar 

  • Schöchl H, Schlimp CJ, Voelckel W. Potential value of pharmacological protocols in trauma. Curr Opin Anesthesiol. 2013b;26(2):221–9.

    Article  CAS  Google Scholar 

  • Schöchl H, Voelckel W, Maegele M, et al. Endogenous thrombin potential following hemostatic therapy with 4-factor prothrombin complex concentrate: a 7-day observational study of trauma patients. Crit Care. 2014;18(4):R147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schochl H, Grottke O, Maegele M. Comparing the viscoelastomeric fibrin polymerization assays FIBTEM(r) (ROTEM) vs. functional fibrinogen(r) (TEG): or why is a higher threshold for fibrinogen substitution better than a lower one? Clin Chem Lab Med. 2016;54(9):e275–6.

    PubMed  Google Scholar 

  • Schreiber MA, Differding J, Thorborg P, et al. Hypercoagulability is most prevalent early after injury and in female patients. J Trauma Inj Infect Crit Care. 2005;58(3):475–81.

    Article  Google Scholar 

  • Schulz PM, Gehringer W, Nöhring S, et al. Biochemical characterization, stability, and pathogen safety of a new fibrinogen concentrate (fibryga®). Biologicals. 2018;52(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  • Seebold JA, Campbell D, Wake E, et al. Targeted fibrinogen concentrate use in severe traumatic haemorrhage. Crit Care Resusc. 2019;21(3):171–8.

    PubMed  Google Scholar 

  • Simmons J, Pittet J-F, Pierce B. Trauma-induced coagulopathy. Curr Anesthesiol Rep. 2014;4(3):189–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AR, Karim SA, Reif RR, et al. ROTEM as a predictor of mortality in patients with severe trauma. J Surg Res. 2020;251:107–11.

    Article  CAS  PubMed  Google Scholar 

  • Solomon C, Sørensen B, Hochleitner G, et al. Comparison of whole blood fibrin-based clot tests in thrombelastography and thromboelastometry. Anesth Analg. 2012;114(4):721–30.

    Article  CAS  PubMed  Google Scholar 

  • Solomon C, Baryshnikova E, Schlimp CJ, et al. FIBTEM plus provides an improved thromboelastometry test for measurement of fibrin-based clot quality in cardiac surgery patients. Anesth Analg. 2013a;117(5):1054–62.

    Article  CAS  PubMed  Google Scholar 

  • Solomon C, Rahe-Meyer N, Schöchl H, et al. Effect of haematocrit on fibrin-based clot firmness in the FIBTEM test. Blood Transfus. 2013b;11(7):412–8.

    PubMed  PubMed Central  Google Scholar 

  • Solomon C, Schöchl H, Ranucci M, et al. Can the viscoelastic parameter α-angle distinguish fibrinogen from platelet deficiency and guide fibrinogen supplementation? Anesth Analg. 2015;121(2):289–301.

    Article  CAS  PubMed  Google Scholar 

  • Spagnolello O, Reed MJ, Dauncey S, et al. Introduction of a ROTEM protocol for the management of trauma-induced coagulopathy. Trauma. 2021;23(4):308–21.

    Article  Google Scholar 

  • Spahn DR, Spahn GH, Stein P. Indications and risks of fibrinogen in surgery and trauma. Seminars in thrombosis and hemostasis 2016;42:147–54.

    Google Scholar 

  • Spasiano A, Barbarino C, Marangone A, et al. Early thromboelastography in acute traumatic coagulopathy: An observational study focusing on pre-hospital trauma care. Eur J Trauma Emerg Surg. 2022;48:431–9.

    Google Scholar 

  • Stabler SN, Li SS, Karpov A, et al. Use of fibrinogen concentrate for trauma-related bleeding: a systematic-review and meta-analysis. J Trauma Acute Care Surg. 2020;89(6):1212–24.

    Article  PubMed  Google Scholar 

  • Stahel PF, Moore EE, Schreier SL, et al. Transfusion strategies in postinjury coagulopathy. Curr Opin Anaesthesiol. 2009;22(2):289–98.

    Article  PubMed  Google Scholar 

  • Stensballe J, Ostrowski SR, Johansson PI. Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol. 2014;27(2):212–8.

    Article  PubMed  Google Scholar 

  • Stettler GR, Moore EE, Moore HB, et al. Redefining postinjury fibrinolysis phenotypes using two viscoelastic assays. J Trauma Acute Care Surg. 2019;86(4):679–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumislawski JJ, Christie SA, Kornblith LZ, et al. Discrepancies between conventional and viscoelastic assays in identifying trauma-induced coagulopathy. Surg: Am. J; 2019.

    Book  Google Scholar 

  • Tanaka KA, Ogawa S, Bolliger D. A primer for clinical use of rotational thromboelastometry. Point of Care. 2012;11:77–84.

    Google Scholar 

  • Tapia NM, Chang A, Norman M, et al. TEG-guided resuscitation is superior to standardized MTP resuscitation in massively transfused penetrating trauma patients. J Trauma Acute Care Surg. 2013;74(2):378–86.

    Article  CAS  PubMed  Google Scholar 

  • Theusinger OM, Stein P, Spahn DR. Transfusion strategy in multiple trauma patients. Curr Opin Crit Care. 2014;20(6):646–55.

    Article  PubMed  Google Scholar 

  • Thomas O, Rein H, Strandberg K, et al. Coagulative safety of epidural catheters after major upper gastrointestinal surgery: advanced and routine coagulation analysis in 38 patients. Perioper Med. 2016;5(1):28.

    Article  Google Scholar 

  • Tonglet ML, Poplavsky J-L, Seidel L, et al. Thromboelastometry in trauma care: a place in the 2018 Belgian health care system? Acta Clin Belg. 2018;73(4):244–50.

    Article  PubMed  Google Scholar 

  • U. S. Burden of Disease Collaborators. The state of us health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–606.

    Article  CAS  Google Scholar 

  • Vucelic D, Jesic R, Jovicic S, et al. Comparison of standard fibrinogen measurement methods with fibrin clot firmness assessed by thromboelastometry in patients with cirrhosis. Thromb Res. 2015;135(6):1124–30.

    Article  CAS  PubMed  Google Scholar 

  • Walsh M, Thomas SG, Howard JC, et al. Blood component therapy in trauma guided with the utilization of the perfusionist and thromboelastography. J Extra Corpor Technol. 2011;43(3):162–7.

    PubMed  PubMed Central  Google Scholar 

  • Watters JM, Sambasivan CN, Zink K, et al. Splenectomy leads to a persistent hypercoagulable state after trauma. Am J Surg. 2010;199(5):646–51.

    Article  PubMed  Google Scholar 

  • Weber CF, Zacharowski K, Meybohm P, et al. Hemotherapy algorithms for coagulopathic cardiac surgery patients. Clin Lab. 2014;60(6):1059–63.

    PubMed  Google Scholar 

  • Weiss G, Lison S, Glaser M, et al. Observational study of fibrinogen concentrate in massive hemorrhage: evaluation of a multicenter register. Blood Coagul Fibrinolysis. 2011;22(8):727–34.

    Article  CAS  PubMed  Google Scholar 

  • Whiting D, DiNardo JA. TEG and ROTEM: technology and clinical applications. Am J Hematol. 2014;89(2):228–32.

    Article  CAS  PubMed  Google Scholar 

  • Wikkelsø AJ, Edwards HM, Afshari A, et al. Pre-emptive treatment with fibrinogen concentrate for postpartum haemorrhage: randomized controlled trial. Br J Anaesth. 2015;114(4):623–33.

    Article  PubMed  CAS  Google Scholar 

  • Williams B, McNeil J, Crabbe A, Tanaka KA. Practical use of thromboelastometry in the management of perioperative coagulopathy and bleeding. Transfus Med Rev. 2017;31:11–25.

    Google Scholar 

  • Woolley T, Midwinter M, Spencer P, et al. Utility of interim ROTEM® values of clot strength, a5 and a10, in predicting final assessment of coagulation status in severely injured battle patients. Injury. 2013;44(5):593–9.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler B, Schimke C, Marchet P, et al. Severe pediatric blunt trauma—successful ROTEM-guided hemostatic therapy with fibrinogen concentrate and no administration of fresh frozen plasma or platelets. Clin Appl Thromb Hemost. 2013;19(4):453–9.

    Article  PubMed  Google Scholar 

  • Ziegler B, Voelckel W, Zipperle J, et al. Comparison between the new fully automated viscoelastic coagulation analysers teg 6s and rotem sigma in trauma patients: A prospective observational study. Eur J Anaesthesiol. 2019;36:834–42.

    Google Scholar 

  • Ziegler B, Bachler M, Haberfellner H, et al. Efficacy of pre-hospital administration of fibrinogen concentrate (clottafact®) in trauma patients presumed to bleed (FIINTIC): results from a multicentre double-blind, placebo-controlled, randomised, pilot trial. Lancet Haematol. 2019;

    Google Scholar 

  • Ziegler B, Bachler M, Haberfellner H, et al. Efficacy of prehospital administration of fibrinogen concentrate in trauma patients bleeding or presumed to bleed (fiintic): a multicentre, double-blind, placebo-controlled, randomised pilot study. Eur J Anaesthesiol. 2021;38(4):348–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry T. Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Peng, H.T., Beckett, A. (2022). Viscoelastic Hemostatic Tests and Fibrinogen Concentrations in Trauma. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Biomarkers in Trauma, Injury and Critical Care. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-87302-8_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87302-8_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87302-8

  • Online ISBN: 978-3-030-87302-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation