Beyond Helly Graphs: The Diameter Problem on Absolute Retracts

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12911))

Included in the following conference series:

Abstract

A subgraph H of a graph G is called a retract of G if it is the image of some idempotent endomorphism of G. We say that H is an absolute retract of some graph class \(\mathcal{C}\) if it is a retract of any \(G \in \mathcal{C}\) of which it is an isochromatic and isometric subgraph. In this paper, we study the complexity of computing the diameter within the absolute retracts of various hereditary graph classes. First, we show how to compute the diameter within absolute retracts of bipartite graphs in randomized \(\tilde{\mathcal{O}}(m\sqrt{n})\) time. Even on the proper subclass of cube-free modular graphs it is, to our best knowledge, the first subquadratic-time algorithm for diameter computation. For the special case of chordal bipartite graphs, it can be improved to linear time, and the algorithm even computes all the eccentricities. Then, we generalize these results to the absolute retracts of k-chromatic graphs, for every \(k \ge 3\). Finally, we study the diameter problem within the absolute retracts of planar graphs and split graphs.

This work was supported by project PN-19-37-04-01 “New solutions for complex problems in current ICT research fields based on modelling and optimization”, funded by the Romanian Core Program of the Ministry of Research and Innovation (MCI) 2019–2022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 90.94
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A vertex v is covered by another vertex w if \(N_G(v) \subseteq N_G(w)\) (a covered vertex is called embeddable in [68]).

References

  1. Abboud, A., Vassilevska Williams, V., Wang, J.R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: SIAM, pp. 377–391 (2016). https://doi.org/10.1137/1.9781611974331.ch28

  2. Albert, R., Jeong, H., Barabási, A.L.: Diameter of the world-wide web. Nature 401(6749), 130–131 (1999)

    Google Scholar 

  3. Bandelt, H.J.: Retracts of hypercubes. Journal of graph theory 8(4), 501–510 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Bandelt, H.J., Chepoi, V.: Metric graph theory and geometry: a survey. Contem. Math. 453, 49–86 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bandelt, H.J., Dählmann, A., Schütte, H.: Absolute retracts of bipartite graphs. Discre. Appl. Math. 16(3), 191–215 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Bandelt, H.J., Farber, M., Hell, P.: Absolute reflexive retracts and absolute bipartite retracts. Discre. Appl. Math. 44(1–3), 9–20 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Bandelt, H.J., Pesch, E.: Dismantling absolute retracts of reflexive graphs. Eur. J. Combin. 10(3), 211–220 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Bandelt, H.-J., Pesch, E.: A Radon theorem for Helly graphs. Archiv der Mathematik 52(1), 95–98 (1989). https://doi.org/10.1007/BF01197978

    Article  MathSciNet  MATH  Google Scholar 

  9. Bandelt, H.J., Pesch, E.: Efficient characterizations of \(n\)-chromatic absolute retracts. J. Combin. Theor. Ser. B 53(1), 5–31 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Bandelt, H.J., Prisner, E.: Clique graphs and Helly graphs. J Combin. Theor. Ser. B 51(1), 34–45 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM (JACM) 30(3), 479–513 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Bondy, J.A., Murty, U.S.R.: Graph Theory, Graduate Texts in Mathematics, vol. 244. Springer-Verlag, London (2008)

    Google Scholar 

  13. Borassi, M., Crescenzi, P., Habib, M.: Into the square: On the complexity of some quadratic-time solvable problems. Electr. Notes Theor. Comput. Sci. 322, 51–67 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Borassi, M., Crescenzi, P., Trevisan, L.: An axiomatic and an average-case analysis of algorithms and heuristics for metric properties of graphs. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 920–939. SIAM (2017)

    Google Scholar 

  15. Bousquet, N., Thomassé, S.: VC-dimension and Erdős-Pósa property. Discre. Math. 338(12), 2302–2317 (2015)

    MATH  Google Scholar 

  16. Brandstädt, A.: Classes of bipartite graphs related to chordal graphs. Discre. Appl. Math. 32(1), 51–60 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Brandstädt, A., Dragan, F., Chepoi, V., Voloshin, V.: Dually chordal graphs. SIAM J. Discre. Math. 11(3), 437–455 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Bringmann, K., Husfeldt, T., Magnusson, M.: Multivariate analysis of orthogonal range searching and graph distances. Algorithmica 82(8), 2292–2315 (2020). https://doi.org/10.1007/s00453-020-00680-z

    Article  MathSciNet  MATH  Google Scholar 

  19. Buneman, P.: A characterisation of rigid circuit graphs. Discre. Math. 9(3), 205–212 (1974)

    MathSciNet  MATH  Google Scholar 

  20. Cabello, S.: Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs. ACM Tran. Algorith. (TALG) 15(2), 1–38 (2018)

    MathSciNet  Google Scholar 

  21. Chalopin, J., Chepoi, V., Genevois, A., Hirai, H., Osajda, D.: Helly groups. Tech. Rep. ar**v:2002.06895, ar**v (2020)

  22. Chang, G., Nemhauser, G.: The \(k\)-domination and \(k\)-stability problems on sun-free chordal graphs. SIAM J. Algebr. Discre. Methods 5(3), 332–345 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Chastand, M., Laviolette, F., Polat, N.: On constructible graphs, infinite bridged graphs and weakly cop-win graphs. Discre. Math. 224(1–3), 61–78 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Chepoi, V.: On distances in benzenoid systems. J. Chem. Inf. Comput. Sci. 36(6), 1169–1172 (1996)

    Google Scholar 

  25. Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of \(\delta \)-hyperbolic geodesic spaces and graphs. In: Symposium on Computational Geometry (SocG), pp. 59–68. ACM (2008)

    Google Scholar 

  26. Chepoi, V., Dragan, F., Vaxès, Y.: Center and diameter problems in plane triangulations and quadrangulations. In: Symposium on Discrete Algorithms (SODA 2002), pp. 346–355 (2002)

    Google Scholar 

  27. Chepoi, V., Dragan, F.: A linear-time algorithm for finding a central vertex of a chordal graph. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 159–170. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049406

    Chapter  Google Scholar 

  28. Chepoi, V., Estellon, B., Vaxès, Y.: Covering planar graphs with a fixed number of balls. Discre. Comput. Geom. 37(2), 237–244 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Corneil, D., Dragan, F., Habib, M., Paul, C.: Diameter determination on restricted graph families. Discre. Appl. Math. 113(2–3), 143–166 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. ACM Trans. Algorith. (TALG) 15(3), 1–57 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Damaschke, P.: Computing giant graph diameters. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 373–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44543-4_29

    Chapter  Google Scholar 

  32. De Rumeur, J.: Communications dans les réseaux de processeurs. Masson, Paris (1994)

    Google Scholar 

  33. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

    Book  MATH  Google Scholar 

  34. Dragan, F.: Almost diameter of a house-hole-free graph in linear time via LexBFS. Discr. Appl. Mathe 95(1–3), 223–239 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Dragan, F.: Centers of graphs and the Helly property. Ph.D. thesis, Moldova State University (1989)

    Google Scholar 

  36. Dragan, F.: Domination in quadrangle-free Helly graphs. Cybern. Syst. Anal. 29(6), 822–829 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Dragan, F., Brandstädt, A.: r-dominating cliques in graphs with hypertree structure. Discre. Math 162(1–3), 93–108 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Dragan, F., Guarnera, H.: Obstructions to a small hyperbolicity in Helly graphs. Discre. Math 342(2), 326–338 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Dragan, F., Guarnera, H.: Helly-gap of a graph and vertex eccentricities. Tech. Rep. ar**v:2005.01921, ar**v (2020)

  40. Dress, A.: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Adv. Math 53(3), 321–402 (1984)

    MathSciNet  MATH  Google Scholar 

  41. Ducoffe, G.: A new application of orthogonal range searching for computing giant graph diameters. In: Symposium on Simplicity in Algorithms (SOSA) (2019)

    Google Scholar 

  42. Ducoffe, G.: Distance problems within Helly graphs and \(k\)-Helly graphs. Tech. Rep. ar**v:2011.00001, ar**v preprint (2020)

  43. Ducoffe, G., Dragan, F.: A story of diameter, radius and Helly property. Networks 77(3), 435–453 (2021)

    Google Scholar 

  44. Ducoffe, G., Habib, M., Viennot, L.: Fast diameter computation within split graphs. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019. LNCS, vol. 11949, pp. 155–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36412-0_13

    Chapter  Google Scholar 

  45. Ducoffe, G., Habib, M., Viennot, L.: Diameter computation on \(H\)-minor free graphs and graphs of bounded (distance) VC-dimension. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1905–1922. SIAM (2020)

    Google Scholar 

  46. Farber, M.: Characterizations of strongly chordal graphs. Discre. Math. 43(2–3), 173–189 (1983)

    MathSciNet  MATH  Google Scholar 

  47. Farley, A., Proskurowski, A.: Computation of the center and diameter of outerplanar graphs. Discre. Appl. Math. 2(3), 185–191 (1980)

    MathSciNet  MATH  Google Scholar 

  48. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)

    MathSciNet  MATH  Google Scholar 

  49. Gawrychowski, P., Kaplan, H., Mozes, S., Sharir, M., Weimann, O.: Voronoi diagrams on planar graphs, and computing the diameter in deterministic \(\tilde{O}(n^{5/3})\) time. In: Symposium on Discrete Algorithms (SODA), pp. 495–514. SIAM (2018)

    Google Scholar 

  50. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs, vol. 57. Elsevier, Amsterdam (2004)

    Google Scholar 

  51. Golumbic, M., Goss, C.: Perfect elimination and chordal bipartite graphs. J. Graph Theor. 2(2), 155–163 (1978)

    MathSciNet  MATH  Google Scholar 

  52. Guarnera, H., Dragan, F., Leitert, A.: Injective hulls of various graph classes. Tech. Rep. ar**v:2007.14377, ar**v (2020)

  53. Hell, P.: Rétractions de graphes. Ph.D. thesis, Thèse (Ph. D.: Mathématiques)-Université de Montréal. 1972. (1972)

    Google Scholar 

  54. Hell, P.: Absolute planar retracts and the four color conjecture. J. Combin. Theor, Ser. B 17(1), 5–10 (1974)

    MathSciNet  MATH  Google Scholar 

  55. Hell, P., Rival, I.: Absolute retracts and varieties of reflexive graphs. Canadian journal of mathematics 39(3), 544–567 (1987)

    MathSciNet  MATH  Google Scholar 

  56. Hell, P.: Absolute retracts in graphs. In: In: Bari R.A., Harary, F. (eds.) Graphs and Combinatorics. Lecture Notes in Mathematics, vol. 406, pp. 291–301 (1974). Springer, Berlin (1974). https://doi.org/10.1007/BFb0066450

  57. Isbell, J.: Six theorems about injective metric spaces. Commentarii Mathematici Helvetici 39(1), 65–76 (1964)

    MathSciNet  MATH  Google Scholar 

  58. Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman, San Francisco (1979)

    Google Scholar 

  59. Klavžar, S.: Absolute retracts of split graphs. Discre. Math 134(1–3), 75–84 (1994)

    MathSciNet  MATH  Google Scholar 

  60. Klisowski, J.: A survey of various modifications of the notions of absolute retracts and absolute neighborhood retracts. In: Colloquium Mathematicum, vol. 46, pp. 23–35. Institute of Mathematics Polish Academy of Sciences (1982)

    Google Scholar 

  61. Kloks, T., Wang, Y.-L.: On retracts, absolute retracts, and foldings in cographs. Optim. Lett. 12(3), 535–549 (2017). https://doi.org/10.1007/s11590-017-1126-9

    Article  MathSciNet  MATH  Google Scholar 

  62. Le, H.O., Le, V.: Hardness and structural results for half-squares of restricted tree convex bipartite graphs. Algorithmica 81(11), 4258–4274 (2019)

    MathSciNet  MATH  Google Scholar 

  63. Lin, M., Szwarcfiter, J.: Faster recognition of clique-Helly and hereditary clique-Helly graphs. Inf. Process. Lett. 103(1), 40–43 (2007)

    MathSciNet  MATH  Google Scholar 

  64. Loten, C.: Absolute retracts and varieties generated by chordal graphs. Discre Math. 310(10–11), 1507–1519 (2010)

    MathSciNet  MATH  Google Scholar 

  65. Olariu, S.: A simple linear-time algorithm for computing the center of an interval graph. Int. J. Comput. Math. 34(3–4), 121–128 (1990)

    MathSciNet  MATH  Google Scholar 

  66. Pesch, E.: Minimal extensions of graphs to absolute retracts. J. Graph Theor. 11(4), 585–598 (1987)

    MathSciNet  MATH  Google Scholar 

  67. Pesch, E.: Products of absolute retracts. Discre. Math. 69(2), 179–188 (1988)

    Google Scholar 

  68. Pesch, E., Poguntke, W.: A characterization of absolute retracts of \(n\)-chromatic graphs. Discre. Math. 57(1–2), 99–104 (1985)

    MathSciNet  MATH  Google Scholar 

  69. Polat, N.: Convexity and fixed-point properties in Helly graphs. Discre. Math. 229(1–3), 197–211 (2001)

    MathSciNet  MATH  Google Scholar 

  70. Polat, N.: On constructible graphs, locally Helly graphs, and convexity. J. Graph Theor. 43(4), 280–298 (2003)

    MathSciNet  MATH  Google Scholar 

  71. Roditty, L., Vassilevska Williams, V.: Fast approximation algorithms for the diameter and radius of sparse graphs. In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing (STOC), pp. 515–524 (2013)

    Google Scholar 

  72. Tarjan, R., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Computi. 13(3), 566–579 (1984)

    MathSciNet  MATH  Google Scholar 

  73. Walter, J.R.: Representations of rigid cycle graphs. Ph.D. thesis, Wayne State University, Department of Mathematics (1972)

    Google Scholar 

  74. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ducoffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ducoffe, G. (2021). Beyond Helly Graphs: The Diameter Problem on Absolute Retracts. In: Kowalik, Ł., Pilipczuk, M., Rzążewski, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2021. Lecture Notes in Computer Science(), vol 12911. Springer, Cham. https://doi.org/10.1007/978-3-030-86838-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86838-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86837-6

  • Online ISBN: 978-3-030-86838-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation