Impacts of Climatic Variability and Hurricanes on Caterpillar Diet Breadth and Plant-Herbivore Interaction Networks

  • Chapter
  • First Online:
Caterpillars in the Middle

Part of the book series: Fascinating Life Sciences ((FLS))

  • 904 Accesses

Abstract

Climatic variability and meteorological extreme events are known to impact insect and plant populations, ecological processes, and ecosystem services. Available evidence suggests that variations in temperature and precipitation and extreme events such as hurricanes or acute droughts can affect nutrient cycling, species abundance and composition of biodiverse insect communities, the strength of species interactions, and the resilience of their networks. However, there is little information on how insects can respond and adapt to such environmental challenges, for example, by modifying their feeding habits and diet breadth, and thus their degree of specialization. In this chapter, we describe how the most abundant oligotrophic caterpillars of a tropical dry forest show variability in their diet breadths in an 11-year study period, as a function of interannual variation in climatic variables and the incidence of two hurricanes, influencing in turn the parameters of plant-herbivore interaction networks. We report that lepidopteran diet breadth was variable across years, and this variation is partially related to some climatic factors such the coefficient of variation in maximum temperature, variation in annual rainfall, and the duration of the preceding dry season. Plant-herbivore network parameters were affected by the same climatic variables, negatively influencing network size, specialization, and the number of compartments, while it positively affects the number of links per species. In addition, years with high variation in precipitation during the rainy season with high precipitation events promoted larger and more specialized networks. Regarding the impact of extreme meteorological events, herbivore’s diet breadth increased after the stroke of two hurricanes, increasing the number of links per species and network connectivity. In contrast, plant-herbivore network size, their specialization degree, and the number of compartments were negatively affected by these extreme events. Understanding the relationship between climatic variability and caterpillar diet breadth leads to open questions on the evolution of herbivore foraging behavior and phenotypic plasticity in plant host use and plant-herbivore network topology, influenced by climate and land use changes.

figure a

Caterpillars of Syssphinx sp. (Saturniidae) (photo by Antonio López-Carretero, above); undetermined species of Aididae (photo by Juan Pablo Martinez, below)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abarca M (2019) Herbivore seasonality responds to conflicting cues: untangling the effects of host, temperature, and photoperiod. PLoSONE 14(9):e0222227

    Article  CAS  Google Scholar 

  • Abarca M, Lill JT (2015) Warming affects hatching time and early season survival of eastern tent caterpillars. Oecologia 179:901–912

    Article  PubMed  Google Scholar 

  • Angulo-Sandoval P, Fernández-Marin H, Zimmerman JK, Aide TM (2004) Changes in patterns of understory leaf phenology and herbivory following hurricane damage. Biotropica 36:60–67

    Google Scholar 

  • Avila-Cabadilla L, Stoner KE, Henry M, Alvarez-Añorve M (2009) Composition, structure and diversity of phyllostomid bat assemblages in different successional stages of a tropical dry forest. For Ecol Manage 258:986–996

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insects herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Barber NA, Marquis RJ (2011) Leaf quality, predators, and stochastic processes in the assembly of a diverse herbivore community. Ecology 92:699–708

    Article  PubMed  Google Scholar 

  • Bernays EA (1998) Evolution of feeding behavior in insect herbivores: success seen as different ways to eat without being eaten. Bio Science 48(1):35–44

    Google Scholar 

  • Bernays EA (2001) Neural limitations in phytophagous insects: implications for dietbreadth and evolution of host affiliation. Annu Rev Entomol 46:703–727

    Article  CAS  PubMed  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Boege K, Villa-Galaviz E, López-Carretero A, Pérez-Ishiwara R, Zaldívar-Riverón A, Ibarra A, del-Val E (2019) Temporal variation in the influence of forest succession on caterpillar communities: a long-term study in a tropical dry forest. Biotropica 51:529–537

    Article  Google Scholar 

  • Bryant JP, Chapin FS III, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Chapin FS III, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Dewer RC, Watt AD (1992) Predicted changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia 89:557–559

    Article  Google Scholar 

  • Díaz Infante S, Lara C, Arizmendi MC (2020) Temporal dynamics of the hummingbird-plant interaction network of a dry forest in Chamela, Mexico: a 30-year follow-up after two hurricanes. Peer J 8:e8338

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory, the role of connectance and size. Proc Natl Acad Sci U S A 99:12917–12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer LA (1995) Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidopteran larvae. Ecology 76:1483–1496

    Article  Google Scholar 

  • Dyer LA et al (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–699

    Article  CAS  PubMed  Google Scholar 

  • Egan SP, Funk DJ (2006) Individual advantages to ecological specialization: insights on cognitive constraints from three conspecific taxa. Proc R Soc London Ser B 273:843–848

    Google Scholar 

  • Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT (2012) Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93:981–991

    Article  CAS  PubMed  Google Scholar 

  • Forister ML et al (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci U S A 112:442–447

    Article  CAS  PubMed  Google Scholar 

  • Forkner RE, Marquis RJ, Lill JT, Corff JL (2008) Timing is everything? Phenological synchrony and population variability in leaf-chewing herbivores of Quercus. Ecol Entomol 33:276–285

    Article  Google Scholar 

  • García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ (2016) Insect tolerance to global warming. Proc Natl Acad Sci U S A 113(3):680–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaston KJ, Reavey D, Valladares G (1991) Changes in feeding habit as caterpillars grow. Ecol Entomol 16:339–344

    Article  Google Scholar 

  • Harrington R, Woiwod I, Sparks T (1999) Climate change and trophic interactions. Trends Ecol Evol 14:146–150. https://doi.org/10.1016/S0169-5347(99)01604-3

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson ID (1997) Progressive restriction of host plant exploitation along a climatic gradient: the willow psyllid Cacopsylla groenlandica in Greenland. Ecol Entomol 21:47–54

    Article  Google Scholar 

  • Hunter MD, Forkner RE (1999) Hurricane damage influences foliar polyphenolics and subsequent herbivory on surviving trees. Ecology 80:2676–2682

    Article  Google Scholar 

  • Hwang S, Hwang F, Shen T (2007) Shifts in developmental diet breadth of Lymantria xylina (Lepidoptera: Lymantriidae). J Econ Entomol 100:1166–1172

    Article  PubMed  Google Scholar 

  • Karban R, Agrawal AA (2002) Herbivore offense. Annu Rev Ecol Syst 33:641–664

    Article  Google Scholar 

  • Karowe DN (1989) Facultative monophagy as a consequence of prior feeding experience: behavioral and physiological specialization in Colias philodice larvae. Oecologia 78:106–111

    Article  CAS  PubMed  Google Scholar 

  • Karpinski A, Haenniger S, Schofl G, Heckel DG, Groot AT (2014) Host plant specialization in the generalist moth Heliothis virescens and the role of egg imprinting. Evol Ecol 28:1075–1093

    Google Scholar 

  • Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi CA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clm 28:7203–7224

    Article  Google Scholar 

  • Koptur S, Rodríguez MC, Oberbauer SF, Weekly C, Herndon A (2002) Herbivore-free time? Damage to new leaves of woody plants after hurricane Andrew. Biotropica 34:547–554

    Article  Google Scholar 

  • Lister BC, Garcia A (2018) Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc Natl Acad Sci U S A 115:E10397–E10406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Gong P, Wu K, Wei W, Sun J, Li D (2007) Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J Insect Physiol 53:1016–1026

    Article  CAS  PubMed  Google Scholar 

  • López-Carretero A, Díaz-Castelazo C, Boege K, Rico-Gray V (2014) Evaluating the spatio-temporal factors that structure network parameters of plant-herbivore interactions. PLoS One 9(10):e110430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Carretero A, Boege K, Díaz-Castelazo C et al (2016) Influence of plant resistance traits in selectiveness and species strength in a tropical plant-herbivore network. Am J Bot 103:1436–1448

    Article  PubMed  Google Scholar 

  • López-Carretero A, Del-Val E, Boege K (2018) Plant-herbivore networks in the tropics. In: Dáttilo W, Rico-Gray V (eds) Ecological networks in the tropics. Springer Verlag, USA, pp 111–123

    Chapter  Google Scholar 

  • Lott EJ, Bullock SH, Solís-Magallanes JA (1987) Floristic diversity and structure of upland and arroyo forests in coastal Jalisco. Biotropica 19:228–235

    Article  Google Scholar 

  • Loxdale HD, Harvey JA (2016) The ‘generalism’ debate: misinterpreting the term in the empirical literature focusing on dietary breadth in insects. Biol J Linn Soc 119:265–282

    Article  Google Scholar 

  • Luviano N, Villa-Galaviz E, Boege K, Zaldivar-Riverón A, del-Val E (2018) Hurricane impacts on plant-herbivore networks along a successional chronosequence in a tropical dry forest. For Ecol Manage 426:158–163

    Article  Google Scholar 

  • Maass JM, Ahedo-Hernández R, Araiza S, Verduzco A, Martínez-Yrízar A, Jaramillo VJ, Parker G, Pascual F, García-Méndez G, Sarukhán J (2018) Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: management implications under extreme hydrometeorological events. For Ecol Manage 426:7–17

    Article  Google Scholar 

  • Manson RH, Jardel E (2009) Perturbaciones y desastres naturales: impactos sobre las ecorregiones, la biodiversidad y el bienestar socioeconómico. In: Capital Natural de México, Vol. II: Estado de Conservación y Tendencias de Cambio (Ed: José Sarukhán., et al.). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. pp. 131–184

    Google Scholar 

  • Markesteijn L, Poorter L, Paz H, Sack L, Bongers F (2011) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ 34:137–148

    Article  PubMed  Google Scholar 

  • Marquis RJ, Lill JT, Forkner RE, Le Corff J, Landosky JM, Whitfield JB (2019) Declines and resilience of communities of leaf chewing insects on Missouri oaks following spring frost and summer drought. Front Ecol Evol 7:396

    Article  Google Scholar 

  • Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37:110–118

    Article  Google Scholar 

  • Méndez-Alonzo R, Paz H, Cruz Zuluaga R, Rosell JA, Olson ME (2012) Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology 93:2397–2406

    Article  PubMed  Google Scholar 

  • Mody K, Unsicker SB, Linsenmair KE (2007) Fitness related diet-mixing by intraspecific host-plant-switching of specialist insect herbivores. Ecology 88:1012–1020

    Article  PubMed  Google Scholar 

  • Olivares E, Medina E (1992) Water and nutrient relations of woody perennials from tropical dry forests. J Veg Sci 3:383–392

    Article  Google Scholar 

  • Pescador-Rubio A, Rodríguez-Palafox A, Noguera FA (2002) Diversidad y estacionalidad de Arthropoda. In: Noguera-Alderte AN, Vega-Rivera JH, Quesada M (eds) Historia natural de Chamela. Instituto de Biología, UNAM, Mexico DF

    Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press- Science - 472 pages

    Google Scholar 

  • Pineda-García F, Paz H, Meinzer FC, Angeles G (2015) Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiol 36:208–217

    PubMed  Google Scholar 

  • Quiroz-Pacheco E, Mora F, Boege K. Domínguez CA, Del-Val E (2020). Effects of herbivory and its timing on reproductive success of a tropical deciduous tree. Annals of Botany 126: 957–969

    Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing R foundation for statistical computing. Vienna, Austria

    Google Scholar 

  • Renner SS, Zohner CM (2018) Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu Rev Ecol Evol Syst 49:165–182

    Article  Google Scholar 

  • Rodrigues D, Moreira GRP (2004) Seasonal variation in larval host plants and consequences for Heliconius erato (Lepidoptera: Nymphalidae) adult body size. Austral Ecol 29:437–445

    Article  Google Scholar 

  • G. Arturo, Sánchez-Azofeifa Mauricio, Quesada Pablo, Cuevas-Reyes Alicia, Castillo Gumersindo, Sánchez-Montoya (2009) Land cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve Mexico. Forest Ecology and Management 258(6):907–912. https://doi.org/10.1016/j.foreco.2008.10.030

  • Sánchez-Azofeifa A, Powers JS, Fernandes G, Quesada M (2014) Tropical dry forests in the Americas. Ecology, conservation, and management. CRC Press, Boca Raton, FL, 556 pp

    Google Scholar 

  • Sánchez-Galván O, Díaz-Castelazo C, Rico-Gray V (2012) Effect of hurricane Karl on a plant-ant network occurring in coastal Veracruz, Mexico. J Trop Ecol 28:603–609

    Article  Google Scholar 

  • Scherrer S, Lepesqueur C, Vieira MC, Almeida-Neto M, Dyer L, Forister M, Diniz IR (2016) Seasonal variation in diet breadth of folivorous Lepidoptera in Brazilian cerrado. Biotropica 48(4):491–498

    Article  Google Scholar 

  • Schowalter TD, Willig MR, Presley SJ (2017) Post-hurricane successional dynamics in abundance and diversity of canopy arthropods in a tropical rainforest. Environ Entomol 46:11–20

    CAS  PubMed  Google Scholar 

  • Scriber JM (2010) Integrating ancient patterns and current dynamics of insect–plant interactions: taxonomic and geographic variation in herbivore specialization. Insect Sci 17:471–507

    Article  Google Scholar 

  • Secretaria de Gobernación (2017). https://www.gob.mx/segob/prensa/mensaje-de-los-titulares-de-cenapred-conagua-y-del-director-de-gestion-de-riesgos-de-la-coordinacion-nacional-de-proteccion-civil. Date consulted: 16-VIII-2017

  • Singer MC, Parmesan C (2020) Colonizations drive host shifts, diversification of preferences and expansion of herbivore diet breadth. bioRxiv:2020.03.31.017830. https://doi.org/10.1101/2020.03.31.017830

  • Singer MC, Thomas CD, Billington HL, Parmesan C (1989) Variation among conspecific insect populations in the mechanistic basis of diet breadth. Anim Behav 37:751–759

    Article  Google Scholar 

  • Singer MC, Wee B, Hawkins S, Butcher M (2008) Rapid natural and anthropogenic diet evolution: three examples from checkerspot butterflies. In: Tilmon KJ (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California, Berkeley, pp 311–324

    Google Scholar 

  • Smilanich AM, Dyer LA, Chambers JQ, Bowers MD (2009) Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol Lett 12:612–621

    Article  PubMed  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78(1):23–55

    Article  PubMed  Google Scholar 

  • Stireman JO III, Dyer LA, Janzen DH, Singer MS, Lill JT, Marquis RJ, Ricklefs RE, Gentry GL, Hallwachs W, Coley PD, Barone JA, Greeney HF, Connahs H, Barbosa P, Morais HC, Diniz IR (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. PNAS 102(48):17384–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, Huey RB (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci U S A 111(15):5610–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol Conserv 94:133–142

    Article  Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205

    Article  CAS  PubMed  Google Scholar 

  • van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52(1):37–55

    Google Scholar 

  • Villa-Galaviz E, Boege K, del-Val E (2012) Resilience in plant-herbivore networks during secondary succession. PLoS One 7:e53009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner SM, Martinez AJ, Ruan YM, Kim KL, Lenhart PA, Dehnel AC et al (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol 29:1402–1410

    Article  Google Scholar 

  • Walker LR, Willig MR (1999) An introduction to terrestrial disturbances. In: Walker LR (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 1–15

    Google Scholar 

Download references

Acknowledgments

The authors thank I. Medina, C. Manrique, F. Gutierrez, E. Castro, L. Solis, A. Flores, N. Luviano, E. Cuevas, B. Mejía, I. Sosa, W. Mendoza, A. López-Carretero, and the students of the biotic interactions ecology laboratory at IIES-UNAM for fieldwork assistance. Special thanks to R. Pérez-Ishiwara for logistical support. We also thank the landowners, UNAM Chamela Biological Station, and the Cuixmala Foundation for kindly allowing access to their proprieties and M. Martínez-Ramos for allowing the incorporation of our study to the MABOTRO original design. This study was funded by PAPIIT-UNAM (IN208610, IN217507, IN211916, IN207016), by CONACyT, Mexico (Red Temática del Código de Barras de la Vida; Proyecto SEP-CB No. 220454), and by SEP CONACyT 2015 255544. Permission to collect larva and adult lepidopteran and plant specimens was given by the Secretaría de Medio Ambiente y Recursos Naturales (SGPA/DGVS/02005/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ek del-Val .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boege, K., Delgado, I.P., Zetina, J., del-Val, E. (2022). Impacts of Climatic Variability and Hurricanes on Caterpillar Diet Breadth and Plant-Herbivore Interaction Networks. In: Marquis, R.J., Koptur, S. (eds) Caterpillars in the Middle. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-86688-4_18

Download citation

Publish with us

Policies and ethics

Navigation