Motif Based Feature Vectors: Towards a Homogeneous Data Representation for Cardiovascular Diseases Classification

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12925))

Included in the following conference series:

  • 780 Accesses

Abstract

A process for generating a unifying motif-based homogeneous feature vector representation is described and evaluated. The motivation was to determine the viability of this representation as a unifying representation for heterogeneous data classification. The focus for the work was cardiovascular disease classification. The reported evaluation indicates that the proposed unifying representation is a viable one, producing better classification results than when a Recurrent Neural Network (RNNs) was applied to just ECG time series data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dau, H.A., Keogh, E.: Matrix profile V: a generic technique to incorporate domain knowledge into motif discovery. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 125–134 (2017)

    Google Scholar 

  2. Lip, G., et al.: Atrial fibrillation. Nat. Rev. Dis. Primers 31, 16016 (2016)

    Article  Google Scholar 

  3. Liu, F., et al.: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J. Med. Imaging Health Inform. 8(7), 1368–1373 (2018)

    Article  Google Scholar 

  4. Mueen, A., Keogh, E., Zhu, Q., Sydney Cash, S., Westover, B.: Exact discovery of time series motifs. In: SIAM International Conference on Data Mining, pp. 473–484. SIAM (2009)

    Google Scholar 

  5. Oh, S.L., Ng, E.Y., San Tan, R., Acharya, U.R.: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 102, 278–287 (2018)

    Article  Google Scholar 

  6. Pourbabaee, B., Roshtkhari, M.J., Khorasani, K.: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Tran. Syst. Man Cybern. Syst. 48(12), 2095–2104 (2018)

    Article  Google Scholar 

  7. Wang, G., et al.: A global and updatable ECG beat classification system based on recurrent neural networks and active learning. Inf. Sci. 501, 523–542 (2019)

    Article  MathSciNet  Google Scholar 

  8. Yeh, C.C.M., et al.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: IEEE 16th International Conference on Data Mining (ICDM), pp. 1317–1322. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanadi Aldosari , Frans Coenen , Gregory Y. H. Lip or Yalin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aldosari, H., Coenen, F., Lip, G.Y.H., Zheng, Y. (2021). Motif Based Feature Vectors: Towards a Homogeneous Data Representation for Cardiovascular Diseases Classification. In: Golfarelli, M., Wrembel, R., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2021. Lecture Notes in Computer Science(), vol 12925. Springer, Cham. https://doi.org/10.1007/978-3-030-86534-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86534-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86533-7

  • Online ISBN: 978-3-030-86534-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation