The Biased Coin Flip Process for Nonparametric Topic Modeling

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12822))

Included in the following conference series:

  • 3509 Accesses

Abstract

The Dirichlet and hierarchical Dirichlet processes are two important techniques for nonparametric Bayesian learning. These learning techniques allow unsupervised learning without specifying traditionally used input parameters. In topic modeling, this can be applied to discovering topics without specifying the number beforehand. Existing methods, such as those applied to topic modeling, usually take on a complex sampling calculation for inference. These techniques for inference of the Dirichlet and hierarchal Dirichlet processes are often based on Markov processes that can deviate from parametric topic modeling. This deviation may not be the best approach in the context of nonparametric topic modeling. Additionally, since they often rely on approximations they can negatively affect the predictive power of such models. In this paper we introduce a new interpretation of nonparametric Bayesian learning called the biased coin flip process—contrived for use in the context of Bayesian topic modeling. We prove mathematically the equivalence of the biased coin flip process to the Dirichlet process with an additional parameter representing the number of trials. A major benefit of the biased coin flip process is the similarity of the inference calculation to that of previous established parametric topic models—which we hope will lead to a more widespread adoption of hierarchical Dirichlet process based topic modeling. Additionally, as we show empirically the biased coin flip process leads to a nonparametric topic model with improved predictive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Based on Google Scholar index of research publications in 2019.

References

  1. Ahmed, A., **ng, E.P.: Dynamic non-parametric mixture models and the recurrent Chinese restaurant process: with applications to evolutionary clustering. In: Proceedings of the SIAM International Conference on Data Mining, SDM 2008, 24–26 April 2008, Atlanta, Georgia, USA, pp. 219–230 (2008)

    Google Scholar 

  2. Azzalini, A., Bowman, A.W.: A look at some data on the old faithful geyser. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 39(3), 357–365 (1990)

    Google Scholar 

  3. Bacallado, S., Favaro, S., Power, S., Trippa, L.: Perfect sampling of the posterior in the hierarchical pitman-YOR process. Bayesian Anal. 1(1), 1–25 (2021)

    Google Scholar 

  4. Blei, D.M., et al.: Hierarchical topic models and the nested Chinese restaurant process. In: Advances in Neural Information Processing Systems 16 [Neural Information Processing Systems, NIPS 2003, 8–13 December 2003, Vancouver and Whistler, British Columbia, Canada], pp. 17–24 (2003)

    Google Scholar 

  5. Blei, D.M., et al.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Google Scholar 

  6. Camerlenghi, F., Lijoi, A., Prünster, I.: Survival analysis via hierarchically dependent mixture hazards. Ann. Stat. 49(2), 863–884 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Christensen, R., Johnson, W.: Modelling accelerated failure time with a Dirichlet process. Biometrika 75(4), 693–704 (1988)

    Google Scholar 

  8. Diana, A., Matechou, E., Griffin, J., Johnston, A., et al.: A hierarchical dependent Dirichlet process prior for modelling bird migration patterns in the UK. Ann. Appl. Stat. 14(1), 473–493 (2020)

    Google Scholar 

  9. Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90(430), 577–588 (1995)

    Google Scholar 

  10. Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat., 209–230 (1973)

    Google Scholar 

  11. Finkel, J.R., Grenager, T., Manning, C.D.: The infinite tree. In: ACL 2007, Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, 23–30 June 2007, Prague, Czech Republic (2007)

    Google Scholar 

  12. Griffiths, T.L., Ghahramani, Z.: The Indian buffet process: an introduction and review. J. Mach. Learn. Res. 12, 1185–1224 (2011)

    Google Scholar 

  13. Heinrich, G.: Infinite LDA implementing the HDP with minimum code complexity (2011)

    Google Scholar 

  14. Ishwaran, H., James, L.F.: Approximate Dirichlet process computing in finite normal mixtures: smoothing and prior information. J. Comput. Graph. Stat. 11(3), 508–532 (2002)

    Google Scholar 

  15. Ishwaran, H., James, L.F.: Generalized weighted Chinese restaurant processes for species sampling mixture models. Statistica Sinica, 1211–1235 (2003)

    Google Scholar 

  16. Izenman, A.J., Sommer, C.J.: Philatelic mixtures and multimodal densities. J. Am. Stat. Assoc. 83(404), 941–953 (1988)

    Google Scholar 

  17. Krueger, R., Rashidi, T.H., Vij, A.: A Dirichlet process mixture model of discrete choice: comparisons and a case study on preferences for shared automated vehicles. J. Choice Modelling 36, 100229 (2020)

    Google Scholar 

  18. Lehnert, L., Littman, M.L., Frank, M.J.: Reward-predictive representations generalize across tasks in reinforcement learning. PLoS Comput. Biol. 16(10), e1008317 (2020)

    Google Scholar 

  19. Li, W., et al.: Nonparametric Bayes pachinko allocation. In: UAI 2007, Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, Vancouver, BC, Canada, 19–22 July 2007, pp. 243–250 (2007)

    Google Scholar 

  20. Lijoi, A., Prünster, I., Walker, S.G., et al.: Bayesian nonparametric estimators derived from conditional Gibbs structures. Ann. Appl. Probab. 18(4), 1519–1547 (2008)

    Google Scholar 

  21. Masumura, R., Asami, T., Oba, T., Sakauchi, S.: Hierarchical latent words language models for automatic speech recognition. J. Inf. Process. 29, 360–369 (2021)

    Google Scholar 

  22. McAuliffe, J.D., et al.: Nonparametric empirical Bayes for the Dirichlet process mixture model. Stat. Comput. 16(1), 5–14 (2006)

    Google Scholar 

  23. Muchene, L., Safari, W.: Two-stage topic modelling of scientific publications: a case study of University of Nairobi, Kenya. Plos One 16(1), e0243208 (2021)

    Google Scholar 

  24. Newman, D., Asuncion, A.U., Smyth, P., Welling, M.: Distributed inference for latent Dirichlet allocation. In: Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 3–6 December 2007, pp. 1081–1088 (2007)

    Google Scholar 

  25. Paisley, J.: A simple proof of the stick-breaking construction of the Dirichlet process (2010)

    Google Scholar 

  26. Paisley, J.W., Carin, L.: Hidden Markov models with stick-breaking priors. IEEE Trans. Signal Process. 57(10), 3905–3917 (2009)

    Google Scholar 

  27. Papaspiliopoulos, O., Roberts, G.O.: Retrospective Markov chain monte Carlo methods for Dirichlet process hierarchical models. Biometrika 95(1), 169–186 (2008)

    Google Scholar 

  28. Porteous, I., Newman, D., Ihler, A.T., Asuncion, A.U., Smyth, P., Welling, M.: Fast collapsed Gibbs sampling for latent Dirichlet allocation. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, 24–27 August 2008, pp. 569–577 (2008)

    Google Scholar 

  29. Postman, M., Huchra, J.P., Geller, M.J.: Probes of large-scale structure in the corona borealis region. Astron. J. 92, 1238–1247 (1986)

    Google Scholar 

  30. Ramage, D., Manning, C.D., Dumais, S.T.: Partially labeled topic models for interpretable text mining. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 457–465 (2011)

    Google Scholar 

  31. Serviansky, H., et al.: Set2Graph: learning graphs from sets. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  32. Shi, Y., Laud, P., Neuner, J.: A dependent Dirichlet process model for survival data with competing risks. Lifetime Data Anal., 1–21 (2020)

    Google Scholar 

  33. Teh, Y.W.: A hierarchical Bayesian language model based on Pitman-YOR processes. In: ACL 2006, 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, Sydney, Australia, 17–21 July 2006 (2006)

    Google Scholar 

  34. Teh, Y.W., Görür, D., Ghahramani, Z.: Stick-breaking construction for the Indian buffet process. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, AISTATS 2007, San Juan, Puerto Rico, 21–24 March 2007, pp. 556–563 (2007)

    Google Scholar 

  35. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

    Google Scholar 

  36. Teh, Y.W., Kurihara, K., Welling, M.: Collapsed variational inference for HDP. In: Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 3–6 December 2007, pp. 1481–1488 (2007)

    Google Scholar 

  37. Thibaux, R., Jordan, M.I.: Hierarchical beta processes and the Indian buffet process. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, AISTATS 2007, San Juan, Puerto Rico, 21–24 March 2007, pp. 564–571 (2007)

    Google Scholar 

  38. Wallach, H.M.: Structured topic models for language. Ph.D. thesis, University of Cambridge Cambridge, UK (2008)

    Google Scholar 

  39. Wang, Y., Bai, H., Stanton, M., Chen, W.-Y., Chang, E.Y.: PLDA: parallel latent Dirichlet allocation for large-scale applications. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 301–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02158-9_26

    Chapter  Google Scholar 

  40. Williamson, S., Wang, C., Heller, K.A., Blei, D.M.: The IBP compound Dirichlet process and its application to focused topic modeling. In: ICML (2010)

    Google Scholar 

  41. Wood, J., et al.: Source-LDA: enhancing probabilistic topic models using prior knowledge sources. In: 33rd IEEE International Conference on Data Engineering (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wood, J., Wang, W., Arnold, C. (2021). The Biased Coin Flip Process for Nonparametric Topic Modeling. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12822. Springer, Cham. https://doi.org/10.1007/978-3-030-86331-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86331-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86330-2

  • Online ISBN: 978-3-030-86331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation