Tomato Detection Using Deep Learning for Robotics Application

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2021)

Abstract

The importance of agriculture and the production of fruits and vegetables has stood out mainly over the past few years, especially for the benefits for our health. In 2021, in the international year of fruit and vegetables, it is important to encourage innovation and evolution in this area, with the needs surrounding the different processes of the different cultures. This paper compares the performance between two datasets for robotics fruit harvesting using four deep learning object detection models: YOLOv4, SSD ResNet 50, SSD Inception v2, SSD MobileNet v2. This work aims to benchmark the Open Images Dataset v6 (OIDv6) against an acquired dataset inside a tomatoes greenhouse for tomato detection in agricultural environments, using a test dataset with acquired non augmented images. The results highlight the benefit of using self-acquired datasets for the detection of tomatoes because the state-of-the-art datasets, as OIDv6, lack some relevant characteristics of the fruits in the agricultural environment, as the shape and the color. Detections in greenhouses environments differ greatly from the data inside the OIDv6, which has fewer annotations per image and the tomato is generally riped (reddish). Standing out in the use of our tomato dataset, YOLOv4 stood out with a precision of 91%. The tomato dataset was augmented and is publicly available (See https://rdm.inesctec.pt/ and https://rdm.inesctec.pt/dataset/ii-2021-001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://www.stereolabs.com/zed/.

References

  1. Food and Agriculture Organization of the United Nations (2021). http://www.fao.org/faostat/en/#data/QC

  2. Fruit and Vegetables - Your Dietary Essentials: the international year of fruits and vegetables. Food & Agriculture org, S.l. (2021)

    Google Scholar 

  3. Open Images V6 (2021). https://storage.googleapis.com/openimages/web/index.html

  4. World Health Organization (2021). https://www.who.int

  5. Biffi, L.J., et al.: ATSS deep learning-based approach to detect apple fruits. Remote Sens. 13(1), 54 (2020). https://doi.org/10.3390/rs13010054

  6. Bresilla, K., Perulli, G.D., Boini, A., Morandi, B., Corelli Grappadelli, L., Manfrini, L.: Single-shot convolution neural networks for real-time fruit detection within the tree. Front. Plant Sci. 10, 611 (2019). https://doi.org/10.3389/fpls.2019.00611

    Article  Google Scholar 

  7. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis., 34 (2010). https://doi.org/10.1007/s11263-009-0275-4

  8. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  9. Kang, H., Chen, C.: Fast implementation of real-time fruit detection in apple orchards using deep learning. Comput. Electr. Agric. 168, 105108 (2020)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v:1412.6980 [cs] (January 2017)

  11. Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C.: Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of ‘MangoYOLO’. Precis. Agric. 20(6), 1107–1135 (2019)

    Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Liu, G., Nouaze, J.C., Touko Mbouembe, P.L., Kim, J.H.: YOLO-Tomato: a robust algorithm for Tomato detection based on YOLOv3. Sensors 20(7), 2145 (2020). https://doi.org/10.3390/s20072145

    Article  Google Scholar 

  14. Magalhães, S.A., et al.: Evaluating the single-shot multibox detector and Yolo deep learning models for the detection of tomatoes in a greenhouse. Sensors 21(10) (2021). https://doi.org/10.3390/s21103569. https://www.mdpi.com/1424-8220/21/10/3569

  15. Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C.: DeepFruits: a fruit detection system using deep neural networks. Sensors 16(8), 1222 (2016). https://doi.org/10.3390/s16081222

    Article  Google Scholar 

  16. Saha, S.: A Comprehensive Guide to Convolutional Neural Networks - the ELI5 way (2018)

    Google Scholar 

  17. Sekachev, B., Manovich, N., Zhiltsov, M.: opencv/cvat: v1.1.0 (2020). https://doi.org/10.5281/zenodo.4009388. https://zenodo.org/record/4009388#.YHcbXD_OUkl

  18. Tu, S., et al.: Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images. Precis. Agric. 21(5), 1072–1091 (2020). https://doi.org/10.1007/s11119-020-09709-3

    Article  Google Scholar 

  19. Yuan, T., et al.: Robust Cherry Tomatoes detection algorithm in greenhouse scene based on SSD. Agriculture 10(5), 160 (2020). https://doi.org/10.3390/agriculture10050160

    Article  Google Scholar 

  20. Zhang, L., Gui, G., Khattak, A.M., Wang, M., Gao, W., Jia, J.: Multi-task cascaded convolutional networks based intelligent fruit detection for designing automated robot. IEEE Access 7, 56028–56038 (2019). https://doi.org/10.1109/ACCESS.2019.2899940

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 - The EU Framework Programme for Research and Innovation 2014–2020, under grant agreement No. 101004085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Neves dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Padilha, T.C., Moreira, G., Magalhães, S.A., dos Santos, F.N., Cunha, M., Oliveira, M. (2021). Tomato Detection Using Deep Learning for Robotics Application. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86230-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86229-9

  • Online ISBN: 978-3-030-86230-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation