Optical Quality Resorbable Calcium-Phosphate Glasses for Biophotonic Applications

  • Chapter
  • First Online:
Ceramics, Glass and Glass-Ceramics

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

Recently developed calcium-phosphate glass formulations are proposed in this chapter as a new class of materials for biomedical optics and photonics. The glasses have been designed and carefully prepared in our laboratory to be dissolvable in biological fluids while being optically transparent, mechanically reliable both in dry and humid environments, and suitable for both preform extrusion and fiber drawing. Optical fibers have been drawn from these glasses using our custom-made induction heated drawing tower and showed attenuation loss values from one to two orders of magnitude lower than the counterpart polymeric-based bioresorbable devices reported in literature. In addition, the optical fibers have been implanted in living rats for several weeks and no clinical signs of any adverse effect have been found. Results on the inscription and characterization of different types of fiber Bragg grating-based optical filters will be also shown, together with the demonstration of the suitability of the above-mentioned bioresorbable optical fibers for time-domain diffuse optical spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vogel, W.: Glass Chemistry, 1st edn. Springer, Berlin (1994)

    Book  Google Scholar 

  2. Sales, B.C., Boatner, L.A.: Lead–iron phosphate glass: a stable storage medium for high–level nuclear waste. Science 226(4670), 45–48 (1984)

    Article  CAS  Google Scholar 

  3. Kreidl, N.J., Weyl, W.A.: Phosphates in ceramic ware: IV, phosphate glasses. J. Am. Ceram. Soc. 24(11), 372–378 (1941)

    Article  CAS  Google Scholar 

  4. Campbell, J.H., Hayden, J.S., Marker, A.: High-power solid-state lasers: a laser glass perspective. Int. J. Appl. Glas. Sci. 2(1), 3–29 (2011)

    Article  CAS  Google Scholar 

  5. Boetti, N.G., Pugliese, D., Ceci-Ginistrelli, E., Lousteau, J., Janner, D., Milanese, D.: Highly doped phosphate glass fibers for compact lasers and amplifiers: a review. Appl. Sci. 7(12), 1295 (2017)

    Article  Google Scholar 

  6. http://www.npphotonics.com/products. Last Accessed 12 June 2020

  7. Abou Neel, E.A., Chrzanowski, W., Knowles, J.C.: Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater. 4(3), 523–534 (2008)

    Article  Google Scholar 

  8. Ahmed, I., Jones, I.A., Parsons, A.J., Bernard, J., Farmer, J., Scotchford, C.A., Walker, G.S., Rudd, C.D.: Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture. J. Mater. Sci.-Mater. Med. 22, 1825–1834 (2011)

    Article  CAS  Google Scholar 

  9. Vitale-Brovarone, C., Novajra, G., Lousteau, J., Milanese, D., Raimondo, S., Fornaro, M.: Phosphate glass fibres and their role in neuronal polarization and axonal growth direction. Acta Biomater. 8(3), 1125–1136 (2012)

    Article  CAS  Google Scholar 

  10. Ceci-Ginistrelli, E., Pugliese, D., Boetti, N.G., Novajra, G., Ambrosone, A., Lousteau, J., Vitale-Brovarone, C., Abrate, S., Milanese, D.: Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber. Opt. Mater. Exp. 6(6), 2040–2051 (2016)

    Article  CAS  Google Scholar 

  11. Gallichi-Nottiani, D., Pugliese, D., Boetti, N.G., Milanese, D., Janner, D.: Toward the fabrication of extruded microstructured bioresorbable phosphate glass optical fibers. Int. J. Appl. Glas. Sci. 11(4), 632–640 (2020)

    Article  CAS  Google Scholar 

  12. Boetti, N.G., Ceci-Ginistrelli, E., Pugliese, D., Novajra, G., Vitale-Brovarone, C., Lousteau, J., Abrate, S., Milanese, D.: Bioresorbable calcium-phosphate optical fiber. In: Proceedings Advanced Photonics, Optical Society of America, Vancouver, Canada, p. 1 (2016)

    Google Scholar 

  13. Sglavo, V.M., Pugliese, D., Sartori, F., Boetti, N.G., Ceci-Ginistrelli, E., Franco, G., Milanese, D.: Mechanical properties of resorbable calcium-phosphate glass optical fiber and capillaries. J. Alloy. Compd. 778, 410–417 (2019)

    Article  CAS  Google Scholar 

  14. Podrazký, O., Peterka, P., Kašík, I., Vytykáčová, S., Proboštová, J., Mrázek, J., Kuneš, M., Závalová, V., Radochová, V., Lyutakov, O., Ceci-Ginistrelli, E., Pugliese, D., Boetti, N.G., Janner, D., Milanese, D.: In vivo testing of a bioresorbable phosphate-based optical fiber. J. Biophotonics 12(7), e201800397 (2019)

    Google Scholar 

  15. Chin, L.C.L., Whelan, W.M., Vitkin, I.A.: Optical-Thermal Response of Laser-Irradiated Tissue, 2nd edn. Springer, Heidelberg (2011)

    Google Scholar 

  16. Othonos, A., Kalli, K.: Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, 1st edn. Artech House, Boston (1999)

    Google Scholar 

  17. Berghmans, F., Geernaert, T., Baghdasaryan, T., Thienpont, H.: Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres. Laser Photon. Rev. 8(1), 27–52 (2014)

    Article  CAS  Google Scholar 

  18. Dennison, C.R., Wild, P.M., Wilson, D.R., Gilbart, M.K.: An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints. Meas. Sci. Technol. 21(11), 115803 (2010)

    Google Scholar 

  19. Candiani, A., Konstantaki, M., Pamvouxoglou, A., Pissadakis, S.: A shear sensing pad, based on ferrofluidic actuation in a microstructured optical fiber. IEEE J. Sel. Top. Quantum Electron. 23(2), 210–216 (2017)

    Article  Google Scholar 

  20. Bertucci, A., Manicardi, A., Candiani, A., Giannetti, S., Cucinotta, A., Spoto, G., Konstantaki, M., Pissadakis, S., Selleri, S., Corradini, R.: Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens. Bioelectron. 63, 248–254 (2015)

    Article  CAS  Google Scholar 

  21. Carvalho, L., Alberto, N.J., Gomes, P.S., Nogueira, R.N., Pinto, J.L., Fernandes, M.H.: In the trail of a new bio-sensor for measuring strain in bone: osteoblastic biocompatibility. Biosens. Bioelectron. 26(10), 4046–4052 (2011)

    Article  CAS  Google Scholar 

  22. Favero, F.C., Pruneri, V., Villatoro, J.: Microstructured opt fiber interferometric breathing sensor. J. Biomed. Opt. 17(3), 037006 (2012)

    Google Scholar 

  23. Grobnic, D., Mihailov, S.J., Walker, R.B., Smelser, C.W., Lafond, C., Croteau, A.: Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber. IEEE Photon. Technol. Lett. 19(12), 943–945 (2007)

    Article  CAS  Google Scholar 

  24. Albert, J., Schülzgen, A., Temyanko, V.L., Honkanen, S., Peyghambarian, N.: Strong Bragg gratings in phosphate glass single mode fiber. Appl. Phys. Lett. 89(10), 101127 (2006)

    Google Scholar 

  25. Sozzi, M., Rahman, A., Pissadakis, S.: Non-monotonous refractive index changes recorded in a phosphate glass optical fibre using 248 nm, 500 fs laser radiation. Opt. Mater. Exp. 1(1), 121–127 (2011)

    Article  CAS  Google Scholar 

  26. Pugliese, D., Konstantaki, M., Konidakis, I., Ceci-Ginistrelli, E., Boetti, N.G., Milanese, D., Pissadakis, S.: Bioresorbable optical fiber Bragg gratings. Opt. Lett. 43(4), 671–674 (2018)

    Article  CAS  Google Scholar 

  27. Theodosiou, A., Pugliese, D., Ceci-Ginistrelli, E., Boetti, N.G., Janner, D., Milanese, D., Kalli, K.: Femtosecond laser written plane-by-plane Bragg grating sensors in bioresorbable phosphate optical fibres. J. Lightwave Technol. 37(10), 2363–2369 (2019)

    Article  Google Scholar 

  28. Albert, J., Shao, L.-Y., Caucheteur, C.: Tilted fiber Bragg grating sensors. Laser Photon. Rev. 7(1), 83–108 (2013)

    Article  CAS  Google Scholar 

  29. Konstantaki, M., Pissadakis, S., Pugliese, D., Ceci-Ginistrelli, E., Boetti, N.G., Milanese, D.: Bragg grating UV inscription in a bioresorbable phosphate glass optical fiber. In: 18th International Conference on Transparent Optical Networks (ICTON), Institute of Electrical and Electronics Engineers, Trento, Italy, pp. 1–4 (2016)

    Google Scholar 

  30. Poulsen, T., Berendt, O., Bjarklev, A., Gruner-Nielsen, L., Soccolich, C.E.: Bragg grating induced cladding mode coupling caused by ultra-violet light absorption. Electron. Lett. 34(10), 1007–1009 (1998)

    Article  Google Scholar 

  31. Chan, C.-F., Chen, C., Jafari, A., Laronche, A., Thomson, D.J., Albert, J.: Optical fiber refractometer using narrowband cladding-mode resonance shifts. Appl. Opt. 46(7), 1142–1149 (2007)

    Article  Google Scholar 

  32. Theodosiou, A., Lacraz, A., Polis, M., Kalli, K., Tsangari, M., Stassis, A., Komodromos, M.: Modified fs-laser inscribed FBG array for rapid mode shape capture of free-free vibrating beams. IEEE Photon. Technol. Lett. 28(14), 1509–1512 (2016)

    Article  Google Scholar 

  33. Fokine, M., Theodosiou, A., Song, S., Hawkins, T., Ballato, J., Kalli, K., Gibson, U.J.: Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers. Optic. Mater. Exp. 7(5), 1589–1597 (2017)

    Article  CAS  Google Scholar 

  34. Theodosiou, A., Hu, X., Caucheteur, C., Kalli, K.: Bragg gratings and Fabry-Perot cavities in low-loss multimode CYTOP polymer fiber. IEEE Photon. Technol. Lett. 30(9), 857–860 (2018)

    Article  CAS  Google Scholar 

  35. Barmenkov, Y.O., Zalvidea, D., Torres-Peiró, S., Cruz, J.L., Andrés, M.V.: Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. Opt. Exp. 14(14), 6394–6399 (2006)

    Article  Google Scholar 

  36. Gibson, A.P., Hebden, J.C., Arridge, S.R.: Recent advances in diffuse optical imaging. Phys. Med. Biol. 50(4), R1–R43 (2015)

    Article  Google Scholar 

  37. Durduran, T., Choe, R., Baker, W.B., Yodh, A.G.: Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 73(7), 076701 (2010)

    Google Scholar 

  38. Bashkatov, A.N., Genina, E.A., Tuchin, V.V.: Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innov. Optic. Health Sci. 4(1), 9–38 (2011)

    Article  Google Scholar 

  39. Torricelli, A., Contini, D., Dalla Mora, A., Pifferi, A., Re, R., Zucchelli, L., Cani, M., Farina, A., Spinelli, L.: Neurophotonics: non-invasive optical techniques for monitoring brain functions. Funct. Neurol. 29(4), 223–230 (2014)

    Google Scholar 

  40. Hoshi, Y., Yamada, Y.: Overview of diffuse optical tomography and its clinical applications. J. Biomed. Optic. 21(9), 091312 (2016)

    Google Scholar 

  41. Lange, F., Tachtsidis, I.: Clinical brain monitoring with time domain NIRS: a review and future perspectives. Appl. Sci. 9(8), 1612 (2019)

    Article  CAS  Google Scholar 

  42. Dalla Mora, A., Di Sieno, L., Re, R., Pifferi, A., Contini, D.: Time-gated single-photon detection in time-domain diffuse optics: a review. Appl. Sci. 10(3), 1101 (2020)

    Article  CAS  Google Scholar 

  43. Di Sieno, L., Boetti, N.G., Dalla Mora, A., Pugliese, D., Farina, A., Konugolu Venkata Sekar, S., Ceci-Ginistrelli, E., Janner, D., Pifferi, A., Milanese, D.: Time-domain diffuse optics using bioresorbable fibers: a proof-of-principle study. In: Amelink, A., Vitkin, I.A. (eds.) European Conference on Biomedical Optics, Novel Biophotonics Techniques and Applications IV, Optical Society of America-Society of Photo-Optical Instrumentation Engineers, vol. 10413, pp. 1–5, Washington-Bellingham, USA (2017)

    Google Scholar 

  44. Wabnitz, H., Taubert, D.R., Mazurenka, M., Steinkellner, O., Jelzow, A., Macdonald, R., Milej, D., Sawosz, P., Kacprzak, M., Liebert, A., Cooper, R., Hebden, J., Pifferi, A., Farina, A., Bargigia, I., Contini, D., Caffini, M., Zucchelli, L., Spinelli, L., Cubeddu, R., Torricelli, A.: Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol. J. Biomed. Opt. 19(8), 086010 (2014)

    Google Scholar 

  45. Pifferi, A., Torricelli, A., Bassi, A., Taroni, P., Cubeddu, R., Wabnitz, H., Grosenick, D., Möller, M., Macdonald, R., Swartling, J., Svensson, T., Andersson-Engels, S., van Veen, R.L.P., Sterenborg, H.J.C.M., Tualle, J.-M., Nghiem, H.L., Avrillier, S., Whelan, M., Stamm, H.: Performance assessment of photon migration instruments: the MEDPHOT protocol. Appl. Opt. 44(11), 2104–2114 (2005)

    Article  Google Scholar 

  46. Di Sieno, L., Boetti, N.G., Dalla Mora, A., Pugliese, D., Farina, A., Konugolu Venkata Sekar, S., Ceci-Ginistrelli, E., Janner, D., Pifferi, A., Milanese, D.: Towards the use of bioresorbable fibers in time-domain diffuse optics. J. Biophoton. 11(1), e201600275 (2018)

    Google Scholar 

  47. Spinelli, L., Botwicz, M., Zolek, N., Kacprzak, M., Milej, D., Sawosz, P., Liebert, A., Weigel, U., Durduran, T., Foschum, F., Kienle, A., Baribeau, F., Leclair, S., Bouchard, J.-P., Noiseux, I., Gallant, P., Mermut, O., Farina, A., Pifferi, A., Torricelli, A., Cubeddu, R., Ho, H.-C., Mazurenka, M., Wabnitz, H., Klauenberg, K., Bodnar, O., Elster, C., Bénazech-Lavoué, M., Bérubé-Lauzière, Y., Lesage, F., Khoptyar, D., Subash, A.A., Andersson-Engels, S., Di Ninni, P., Martelli, F., Zaccanti, G.: Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink. Biomed. Opt. Exp. 5(7), 2037–2053 (2014)

    Article  CAS  Google Scholar 

  48. Contini, D., Martelli, F., Zaccanti, G.: Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory. Appl. Opt. 36(19), 4587–4599 (1997)

    Article  CAS  Google Scholar 

  49. Bisland, S.K., Lilge, L., Lin, A., Rusnov, R., Wilson, B.C.: Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Photochem. Photobiol. 80(1), 22–30 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Pugliese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pugliese, D., Boetti, N.G., Janner, D., Milanese, D. (2021). Optical Quality Resorbable Calcium-Phosphate Glasses for Biophotonic Applications. In: Baino, F., Tomalino, M., Tulyaganov, D. (eds) Ceramics, Glass and Glass-Ceramics. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-85776-9_7

Download citation

Publish with us

Policies and ethics

Navigation