Response of Cardiomyocytes to Mechanical Stress

  • Chapter
  • First Online:
Cardiomyocytes in Health and Disease

Abstract

Mechanical stretch activates several intracellular signalling networks and modulates gene expressions which initiate structural and functional remodelling in cardiomyocytes. Various durations, loads and frequencies of mechanical forces induce differing response mechanisms. Cardiomyocytes remodel in response to mechanical stress both during cardiac development as well as in disease conditions. In both of these situations, the cytoskeleton has a key role in sensing mechanical stress and in mediating adaptive or maladaptive changes within the cardiomyocyte. Cytoskeleton which is highly sensitive and adaptive to mechanical forces acts as a signal integrator for mechanical and structural inputs. The information is transmitted throughout the cardiomyocyte to ensure that the cell respond and adapt appropriately. Mechanical stretch induces secretion or synthesis of molecules with autocrine and paracrine effects. Energy metabolism is also altered in adult cardiomyocytes, which hypertrophy in response to mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank D, Kuhn C, Brors B, Hanselmann C, Lüdde M, Katus HA, et al. Gene expression pattern in biomechanically stretched cardiomyocytes: Evidence for a stretch-specific gene program. Hypertension. 2008;51(2):309–18.

    Article  CAS  PubMed  Google Scholar 

  2. Smith SH, Bishop SP. Regional myocyte size in compensated right ventricular hypertrophy in the ferret. J Mol Cell Cardiol. 1985;17(10):1005–11.

    Article  CAS  PubMed  Google Scholar 

  3. Shyu K, Chen J, Shih N, Wang D, Chang H, Lien W, et al. Regulation of human cardiac myosin heavy chain genes by cyclical mechanical stretch in cultured cardiocytes. Biochem Biophys Res Commun. 1995;210(2):567–73.

    Article  CAS  PubMed  Google Scholar 

  4. McNicholas-Bevensee CM, DeAndrade KB, Bradley WE, Dell’Italia LJ, Lucchesi PA, Bevensee MO. Activation of gadolinium-sensitive ion channels in cardiomyocytes in early adaptive stages of volume overload-induced heart failure. Cardiovasc Res. 2006;72(2):262–70.

    Article  CAS  PubMed  Google Scholar 

  5. Otani H, Matsuhisa S, Akita Y, Kyoi S, Enoki C, Tatsumi K, et al. Role of mechanical stress in the form of cardiomyocyte death during the early phase of reperfusion. Circ J. 2006;70(10):1344–55.

    Article  CAS  PubMed  Google Scholar 

  6. Taber LA. Biomechanics of cardiovascular development. Annu Rev Biomed Eng. 2001;3(1):1–25.

    Article  CAS  PubMed  Google Scholar 

  7. Auman HJ, Coleman H, Riley HE, Olale F, Tsai H-J, Yelon D. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 2007;5(3):e53.

    Google Scholar 

  8. Berdougo E, Coleman H, Lee DH, Stainier DY, Yelon D. Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development. 2003;130(24):6121–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421(6919):172–7.

    Article  CAS  PubMed  Google Scholar 

  10. Price R, Chintanowonges C, Shiraishi I, Borg T, Terracio L. Local and regional variations in myofibrillar patterns in loo** rat hearts. Anatom Record: Official Publ Am Assoc Anatom. 1996;245(1):83–93.

    Article  CAS  Google Scholar 

  11. Taber LA, Lin IE, Clark EB. Mechanics of cardiac loo**. Dev Dyn. 1995;203(1):42–50.

    Article  CAS  PubMed  Google Scholar 

  12. Icardo J, Ojeda J. Effects of colchicine on the formation and loo** of the tubular heart of the embryonic chick. Cells Tissues Organs. 1984;119(1):1–9.

    Article  CAS  Google Scholar 

  13. Itasaki N, Nakamura H, Sumida H, Yasuda M. Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-loo** in the embryonic chick heart. Anat Embryol. 1991;183(1):29–39.

    Article  CAS  Google Scholar 

  14. Latacha KS, Rémond MC, Ramasubramanian A, Chen AY, Elson EL, Taber LA. Role of actin polymerization in bending of the early heart tube. Develop Dyn: Official Publ Am Assoc Anatom. 2005;233(4):1272–86.

    Article  CAS  Google Scholar 

  15. Manasek FJ, Burnside MB, Waterman RE. Myocardial cell shape change as a mechanism of embryonic heart loo**. Dev Biol. 1972;29(4):349–71.

    Article  CAS  PubMed  Google Scholar 

  16. Manasek FJ, Monroe RG. Early cardiac morphogenesis is independent of function. Dev Biol. 1972;27(4):584–8.

    Article  CAS  PubMed  Google Scholar 

  17. Manning A, McLachlan J. Loo** of chick embryo hearts in vitro. J Anat. 1990;168:257.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rémond MC, Fee JA, Elson EL, Taber LA. Myosin-based contraction is not necessary for cardiac c-loo** in the chick embryo. Anat Embryol. 2006;211(5):443–54.

    Article  CAS  Google Scholar 

  19. Baker EL, Zaman MH. The biomechanical integrin. J Biomech. 2010;43(1):38–44.

    Article  PubMed  Google Scholar 

  20. Humphries M. Integrin structure. Biochem Soc Trans. 2000;28(4):311–40.

    Article  CAS  PubMed  Google Scholar 

  21. Ross RS, Borg TK. Integrins and the myocardium. Circ Res. 2001;88(11):1112–9.

    Article  CAS  PubMed  Google Scholar 

  22. McCain ML, Parker KK. Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflügers Archiv-Europ J Physiol. 2011;462(1):89–104.

    Article  CAS  Google Scholar 

  23. Brancaccio M, Hirsch E, Notte A, Selvetella G, Lembo G, Tarone G. Integrin signalling: the tug-of-war in heart hypertrophy. Cardiovasc Res. 2006;70(3):422–33.

    Article  CAS  PubMed  Google Scholar 

  24. Meyer CJ, Alenghat FJ, Rim P, Fong JH-J, Fabry B, Ingber DE. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol. 2000;2(9):666–8.

    Google Scholar 

  25. Hoshijima M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol-Heart Circul Physiol. 2006;290(4):H1313–25.

    Article  CAS  Google Scholar 

  26. Bendig G, Grimmler M, Huttner IG, Wessels G, Dahme T, Just S, et al. Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev. 2006;20(17):2361–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brancaccio M, Guazzone S, Menini N, Sibona E, Hirsch E, De Andrea M, et al. Melusin is a new muscle-specific interactor for β1integrin cytoplasmic domain. J Biol Chem. 1999;274(41):29282–8.

    Article  CAS  PubMed  Google Scholar 

  28. Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, et al. Melusin, a muscle-specific integrin β 1–interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med. 2003;9(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  29. Flick MJ, Konieczny SF. The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin. J Cell Sci. 2000;113(9):1553–64.

    Article  CAS  PubMed  Google Scholar 

  30. Boateng SY, Belin RJ, Geenen DL, Margulies KB, Martin JL, Hoshijima M, et al. Cardiac dysfunction and heart failure are associated with abnormalities in the subcellular distribution and amounts of oligomeric muscle LIM protein. Am J Physiol-Heart Circul Physiol. 2007;292(1):H259–69.

    Article  CAS  Google Scholar 

  31. Knöll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang M-L, et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell. 2002;111(7):943–55.

    Article  PubMed  Google Scholar 

  32. Fürst DO, Osborn M, Nave R, Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol. 1988;106(5):1563–72.

    Article  PubMed  Google Scholar 

  33. Helmes M, Trombitas K, Centner T, Kellermayer M, Labeit S, Linke W, et al. Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring. Circ Res. 1999;84(11):1339–52.

    Article  CAS  PubMed  Google Scholar 

  34. Helmes M, Trombita´ s Kr, Granzier H. Titin develops restoring force in rat cardiac myocytes. Circul Res. 1996;79(3):619–26.

    Google Scholar 

  35. de Tombe PP, Mateja RD, Tachampa K, Mou YA, Farman GP, Irving TC. Myofilament length dependent activation. J Mol Cell Cardiol. 2010;48(5):851–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Krüger M, Linke WA. Titin-based mechanical signalling in normal and failing myocardium. J Mol Cell Cardiol. 2009;46(4):490–8.

    Article  PubMed  CAS  Google Scholar 

  37. Linke WA. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res. 2008;77(4):637–48.

    CAS  PubMed  Google Scholar 

  38. LeWinter MM, Granzier H. Cardiac titin: a multifunctional giant. Circulation. 2010;121(19):2137–45.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miller MK, Bang M-L, Witt CC, Labeit D, Trombitas C, Watanabe K, et al. The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. J Mol Biol. 2003;333(5):951–64.

    Article  CAS  PubMed  Google Scholar 

  40. Aihara Y, Kurabayashi M, Saito Y, Ohyama Y, Tanaka T, Takeda S-i, et al. Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter. Hypertension. 2000;36(1):48–53.

    Google Scholar 

  41. Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation. 2004;110(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  42. Granzier HL, Radke MH, Peng J, Westermann D, Nelson OL, Rost K, et al. Truncation of titin’s elastic PEVK region leads to cardiomyopathy with diastolic dysfunction. Circ Res. 2009;105(6):557–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sheikh F, Raskin A, Chu P-H, Lange S, Domenighetti AA, Zheng M, et al. An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Investig. 2008;118(12):3870–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lange S, Auerbach D, McLoughlin P, Perriard E, Schäfer BW, Perriard J-C, et al. Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci. 2002;115(24):4925–36.

    Article  CAS  PubMed  Google Scholar 

  45. Harris TJ, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol. 2010;11(7):502–14.

    Article  CAS  Google Scholar 

  46. Angst BD, Khan LU, Severs NJ, Whitely K, Rothery S, Thompson RP, et al. Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res. 1997;80(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  47. Gourdie RG, Green CR, Severs NJ, Thompson RP. Immunolabelling patterns of gap junction connexins in the develo** and mature rat heart. Anat Embryol. 1992;185(4):363–78.

    Article  CAS  Google Scholar 

  48. Peters NS, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation. 1994;90(2):713–25.

    Article  CAS  PubMed  Google Scholar 

  49. Goncharova EJ, Kam Z, Geiger B. The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes. Development. 1992;114(1):173–83.

    Article  CAS  PubMed  Google Scholar 

  50. Wu JC, Chung TH, Tseng YZ, Wang SM. N-cadherin/catenin–based costameres in cultured chicken cardiomyocytes. J Cell Biochem. 1999;75(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  51. Wu JC, Sung HC, Chung TH, DePhilip RM. Role of N-cadherin-and integrin-based costameres in the development of rat cardiomyocytes. J Cell Biochem. 2002;84(4):717–24.

    Article  PubMed  CAS  Google Scholar 

  52. Le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, et al. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II–dependent manner. J Cell Biol. 2010;189(7):1107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, et al. Mechanical tugging force regulates the size of cell–cell junctions. Proceedings of the National Academy of Sciences USA. 2010;107(22):9944–9.

    Article  CAS  Google Scholar 

  54. Hertig CM, Eppenberger-Eberhardt M, Koch S, Eppenberger HM. N-cadherin in adult rat cardiomyocytes in culture. I. Functional role of N-cadherin and impairment of cell-cell contact by a truncated N-cadherin mutant. J Cell Sci. 1996;109(1):1–10.

    Google Scholar 

  55. Imanaka-Yoshida K, Knudsen KA, Linask KK. N-cadherin is required for the differentiation and initial myofibrillogenesis of chick cardiomyocytes. Cell Motil Cytoskelet. 1998;39(1):52–62.

    Article  CAS  Google Scholar 

  56. Luo Y, Radice GL. Cadherin-mediated adhesion is essential for myofibril continuity across the plasma membrane but not for assembly of the contractile apparatus. J Cell Sci. 2003;116(8):1471–9.

    Article  CAS  PubMed  Google Scholar 

  57. Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol. 1997;181(1):64–78.

    Article  CAS  PubMed  Google Scholar 

  58. Soler AP, Knudsen KA. N-cadherin involvement in cardiac myocyte interaction and myofibrillogenesis. Dev Biol. 1994;162(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  59. Gourdie R, Green C, Severs N. Gap junction distribution in adult mammalian myocardium revealed by an anti-peptide antibody and laser scanning confocal microscopy. J Cell Sci. 1991;99(1):41–55.

    Article  PubMed  Google Scholar 

  60. Grant DA. Ventricular constraint in the fetus and newborn. Can J Cardiol. 1999;15(1):95–104.

    CAS  PubMed  Google Scholar 

  61. Hirschy A, Schatzmann F, Ehler E, Perriard J-C. Establishment of cardiac cytoarchitecture in the develo** mouse heart. Dev Biol. 2006;289(2):430–41.

    Article  CAS  PubMed  Google Scholar 

  62. Salameh A, Wustmann A, Karl S, Blanke K, Apel D, Rojas-Gomez D, et al. Novelty and significance. Circ Res. 2010;106(10):1592–602.

    Article  CAS  PubMed  Google Scholar 

  63. Simpson DG, Decker ML, Clark WA, Decker RS. Contractile activity and cell-cell contact regulate myofibrillar organization in cultured cardiac myocytes. J Cell Biol. 1993;123(2):323–36.

    Article  CAS  PubMed  Google Scholar 

  64. Zhuang J, Yamada KA, Saffitz JE, Kléber AG. Pulsatile stretch remodels cell-to-cell communication in cultured myocytes. Circ Res. 2000;87(4):316–22.

    Article  CAS  PubMed  Google Scholar 

  65. Ingber DE, Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003;116(7):1157–73.

    Article  CAS  PubMed  Google Scholar 

  66. Tsutsui H, Ishihara K, Cooper G. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science. 1993;260(5108):682–7.

    Article  CAS  PubMed  Google Scholar 

  67. Tagawa H, Wang N, Narishige T, Ingber DE, Zile MR, Cooper G IV. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ Res. 1997;80(2):281–9.

    Article  CAS  PubMed  Google Scholar 

  68. Tsutsui H, Tagawa H, Kent RL, McCollam PL, Ishihara K, Nagatsu M, et al. Role of microtubules in contractile dysfunction of hypertrophied cardiocytes. Circulation. 1994;90(1):533–55.

    Article  CAS  PubMed  Google Scholar 

  69. Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, Mahadevan L, et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol. 2006;173(5):733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Franz MR, Burkhoff D, Yue DT, Sagawa K. Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc Res. 1989;23(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  71. Boland J, Troquet J. Intracellular action potential changes induced in both ventricles of the rat by an acute right ventricular pressure overload. Cardiovasc Res. 1980;14(12):735–40.

    Article  CAS  PubMed  Google Scholar 

  72. Franz MR, Cima R, Wang D, Profitt D, Kurz R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation. 1992;86(3):968–78.

    Article  CAS  PubMed  Google Scholar 

  73. Furukawa T, Yamane T-i, Terai T, Katayama Y, Hiraoka M. Functional linkage of the cardiac ATP-sensitive K+ channel to the actin cytoskeleton. Pflügers Archiv. 1996;431(4):504–12.

    Google Scholar 

  74. Galli A, DeFelice LJ. Inactivation of L-type Ca channels in embryonic chick ventricle cells: Dependence on the cytoskeletal agents colchicine and taxol. Biophys J . 1994;67(6):2296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parker KK, Taylor LK, Atkinson B, Hansen DE, Wikswo JP. The effects of tubulin-binding agents on stretch-induced ventricular arrhythmias. Eur J Pharmacol. 2001;417(1–2):131–40.

    Article  CAS  PubMed  Google Scholar 

  76. Terzic A, Kurachi Y. Actin microfilament disrupters enhance K (ATP) channel opening in patches from guinea-pig cardiomyocytes. J Physiol. 1996;492(2):395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Walsh KB, Parks GE. Changes in cardiac myocyte morphology alter the properties of voltage-gated ion channels. Cardiovasc Res. 2002;55(1):64–75.

    Article  CAS  PubMed  Google Scholar 

  78. Yin L, Bien H, Entcheva E. Scaffold topography alters intracellular calcium dynamics in cultured cardiomyocyte networks. Am J Physiol-Heart Circul Physiol. 2004;287(3):H1276–85.

    Article  CAS  Google Scholar 

  79. Blaauw E, van Nieuwenhoven FA, Willemsen P, Delhaas T, Prinzen FW, Snoeckx LH, et al. Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Am J Physiol-Heart Circul Physiol. 2010;299(3):H780–7.

    Article  CAS  Google Scholar 

  80. Cadre BM, Qi M, Eble DM, Shannon TR, Bers DM, Samarel AM. Cyclic stretch down-regulates calcium transporter gene expression in neonatal rat ventricular myocytes. J Mol Cell Cardiol. 1998;30(11):2247–59.

    Article  CAS  PubMed  Google Scholar 

  81. De Jonge HW, Dekkers DH, Houtsmuller AB, Sharma HS, Lamers JM. Differential signaling and hypertrophic responses in cyclically stretched vs endothelin-1 stimulated neonatal rat cardiomyocytes. Cell Biochem Biophys. 2007;47(1):21–32.

    Article  PubMed  Google Scholar 

  82. Simpson D, Majeski M, Borg T, Terracio L. Regulation of cardiac myocyte protein turnover and myofibrillar structure in vitro by specific directions of stretch. Circ Res. 1999;85(10):e59–69.

    Article  CAS  PubMed  Google Scholar 

  83. Matsuda T, Takahashi K, Nariai T, Ito T, Takatani T, Fujio Y, et al. N-cadherin-mediated cell adhesion determines the plasticity for cell alignment in response to mechanical stretch in cultured cardiomyocytes. Biochem Biophys Res Commun. 2004;326(1):228–32.

    Article  CAS  Google Scholar 

  84. Yamane M, Matsuda T, Ito T, Fujio Y, Takahashi K, Azuma J. Rac1 activity is required for cardiac myocyte alignment in response to mechanical stress. Biochem Biophys Res Commun. 2007;353(4):1023–7.

    Article  CAS  PubMed  Google Scholar 

  85. Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, et al. Integrins play a critical role in mechanical stress–induced p38 MAPK activation. Hypertension. 2002;39(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  86. Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, et al. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng. 2003;81(5):578–87.

    Article  CAS  PubMed  Google Scholar 

  87. Bullard TA, Hastings JL, Davis JM, Borg TK, Price RL. Altered PKC expression and phosphorylation in response to the nature, direction, and magnitude of mechanical stretch. Can J Physiol Pharmacol. 2007;85(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  88. Domian IJ, Chiravuri M, Van Der Meer P, Feinberg AW, Shi X, Shao Y, et al. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science. 2009;326(5951):426–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pijnappels DA, Schalij MJ, Ramkisoensing AA, van Tuyn J, de Vries AA, van der Laarse A, et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res. 2008;103(2):167–76.

    Article  CAS  PubMed  Google Scholar 

  90. Tay CY, Yu H, Pal M, Leong WS, Tan NS, Ng KW, et al. Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage. Exp Cell Res. 2010;316(7):1159–68.

    Article  CAS  PubMed  Google Scholar 

  91. Gwak S-J, Bhang SH, Kim I-K, Kim S-S, Cho S-W, Jeon O, et al. The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials. 2008;29(7):844–56.

    Article  CAS  PubMed  Google Scholar 

  92. Shimko VF, Claycomb WC. Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A. 2008;14(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  93. Pelham RJ, Wang Y-l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sciences USA. 1997;94(25):13661–5.

    Google Scholar 

  94. Bajaj P, Tang X, Saif TA, Bashir R. Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J Biomed Mater Res, Part A. 2010;95(4):1261–9.

    Article  CAS  Google Scholar 

  95. Bhana B, Iyer RK, Chen WLK, Zhao R, Sider KL, Likhitpanichkul M, et al. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng. 2010;105(6):1148–60.

    CAS  PubMed  Google Scholar 

  96. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H-Y, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121(22):3794–802.

    Article  CAS  PubMed  Google Scholar 

  97. Jacot JG, McCulloch AD, Omens JH. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J . 2008;95(7):3479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem. 1996;271(6):3221–8.

    Article  CAS  PubMed  Google Scholar 

  99. Saygili E, Rana OR, Saygili E, Reuter H, Frank K, Schwinger RH, et al. Losartan prevents stretch-induced electrical remodeling in cultured atrial neonatal myocytes. Am J Physiol-Heart Circul Physiol. 2007;292(6):H2898–905.

    Article  CAS  Google Scholar 

  100. Torsoni AS, Marin TM, Velloso LA, Franchini KG. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol-Heart Circul Physiol. 2005;289(4):H1488–96.

    Article  CAS  Google Scholar 

  101. Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, et al. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol. 2005;202(2):536–53.

    Article  CAS  PubMed  Google Scholar 

  102. Sadoshima J-i, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 1993;12(4):1681–92.

    Google Scholar 

  103. Liang F, Gardner DG. Mechanical strain activates BNP gene transcription through a p38/NF-κB–dependent mechanism. J Clin Investig. 1999;104(11):1603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Parker KK, Ingber DE. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans R Soc B: Biol Sci. 2007;362(1484):1267–79.

    Article  CAS  Google Scholar 

  105. Anversa P, Ricci R, Olivetti G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J Am Coll Cardiol. 1986;7(5):1140–9.

    Article  CAS  PubMed  Google Scholar 

  106. Gerdes A. Remodeling of ventricular myocytes during cardiac hypertrophy and heart failure. J Fla Med Assoc. 1992;79(4):253–5.

    CAS  PubMed  Google Scholar 

  107. Gerdes AM. Cardiac myocyte remodeling in hypertrophy and progression to failure. J Cardiac Fail. 2002;8(6):S264–8.

    Article  Google Scholar 

  108. Gerdes AM, Capasso JM. Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. J Mol Cell Cardiol. 1995;27(3):849–56.

    Article  CAS  PubMed  Google Scholar 

  109. Katz AM. Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc Drugs Ther. 2002;16(3):245–9.

    Article  CAS  PubMed  Google Scholar 

  110. Grossman W, Jones D, McLaurin L. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Investig. 1975;56(1):56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Werchan PM, Summer WR, Gerdes AM, McDonough K. Right ventricular performance after monocrotaline-induced pulmonary hypertension. Am J Physiol-Heart Circul Physiol. 1989;256(5):H1328–36.

    Article  CAS  Google Scholar 

  112. Zierhut W, Zimmer H, Gerdes A. Effect of angiotensin converting enzyme inhibition on pressure-induced left ventricular hypertrophy in rats. Circ Res. 1991;69(3):609–17.

    Article  CAS  PubMed  Google Scholar 

  113. Capasso JM, Fitzpatrick D, Anversa P. Cellular mechanisms of ventricular failure: myocyte kinetics and geometry with age. Am J Physiol-Heart Circul Physiol. 1992;262(6):H1770–81.

    Article  CAS  Google Scholar 

  114. Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, et al. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation. 1992;86(2):426–30.

    Article  CAS  PubMed  Google Scholar 

  115. Luk A, Ahn E, Soor GS, Butany J. Dilated cardiomyopathy: a review. J Clin Pathol. 2009;62(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  116. Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med. 2000;343(23):1688–96.

    Article  CAS  PubMed  Google Scholar 

  117. Lapidos KA, Kakkar R, McNally EM. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res. 2004;94(8):1023–31.

    Article  CAS  PubMed  Google Scholar 

  118. Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman J, et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation. 2002;105(4):446–51.

    Article  CAS  PubMed  Google Scholar 

  119. Pimentel DR, Amin JK, **ao L, Miller T, Viereck J, Oliver-Krasinski J, et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res. 2001;89(5):453–60.

    Article  CAS  PubMed  Google Scholar 

  120. Liao X, Liu JM, Du L, Tang A, Shang Y, Wang SQ, et al. Nitric oxide signaling in stretch-induced apoptosis of neonatal rat cardiomyocytes. FASEB J. 2006;20(11):1883–5.

    Article  CAS  PubMed  Google Scholar 

  121. Shyu K-G, Chen C-C, Wang B-W, Kuan P. Angiotensin II receptor antagonist blocks the expression of connexin43 induced by cyclical mechanical stretch in cultured neonatal rat cardiac myocytes. J Mol Cell Cardiol. 2001;33(4):691–8.

    Article  CAS  PubMed  Google Scholar 

  122. Saffitz JE, Kléber AG. Effects of mechanical forces and mediators of hypertrophy on remodeling of gap junctions in the heart. Circ Res. 2004;94(5):585–91.

    Article  CAS  PubMed  Google Scholar 

  123. Pimentel RC, Yamada KA, Kléber AG, Saffitz JE. Autocrine regulation of myocyte Cx43 expression by VEGF. Circ Res. 2002;90(6):671–7.

    Article  CAS  PubMed  Google Scholar 

  124. Zhou C, Ziegler C, Birder LA, Stewart AF, Levitan ES. Angiotensin II and stretch activate NADPH oxidase to destabilize cardiac Kv4. 3 channel mRNA. Circul Res. 2006;98(8):1040–7.

    Google Scholar 

  125. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 2004;6(6):499–506.

    Article  CAS  PubMed  Google Scholar 

  126. Shyu K-G, Ko W-H, Yang W-S, Wang B-W, Kuan P. Insulin-like growth factor-1 mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes. Cardiovasc Res. 2005;68(3):405–14.

    Article  CAS  PubMed  Google Scholar 

  127. Liang Y-J, Lai L-P, Wang B-W, Juang S-J, Chang C-M, Leu J-G, et al. Mechanical stress enhances serotonin 2B receptor modulating brain natriuretic peptide through nuclear factor-κB in cardiomyocytes. Cardiovasc Res. 2006;72(2):303–12.

    Article  CAS  PubMed  Google Scholar 

  128. Wang B-W, Hung H-F, Chang H, Kuan P, Shyu K-G. Mechanical stretch enhances the expression of resistin gene in cultured cardiomyocytes via tumor necrosis factor-α. Am J Physiol-Heart Circul Physiol. 2007;293(4):H2305–12.

    Article  CAS  Google Scholar 

  129. Naka T, Sakoda T, Doi T, Akagami T, Tsu**o T, Masuyama T, et al. Mechanical stretch induced interleukin‐18 (IL‐18) expression through angiotensin subtype 1 receptor (AT1R) and endothelin‐1 in cardiomyocytes. Preparat Biochem Biotechnol. 2008; 38(2):201–12.

    Google Scholar 

  130. Sadoshima J-i, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993; 75(5):977–84.

    Google Scholar 

  131. Lorell BH, Grossman W. Cardiac hypertrophy: The consequences for diastol. J Am Coll Cardiol. 1987;9(5):1189–93.

    Article  CAS  PubMed  Google Scholar 

  132. Clerk A, Cullingford TE, Fuller SJ, Giraldo A, Markou T, Pikkarainen S, et al. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol. 2007;212(2):311–22.

    Article  CAS  PubMed  Google Scholar 

  133. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier O, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation. 2001;104(24):2923–31.

    Article  CAS  PubMed  Google Scholar 

  134. Sambandam N, Lopaschuk GD, Brownsey RW, Allard MF. Energy metabolism in the hypertrophied heart. Heart Fail Rev. 2002;7(2):161–73.

    Article  CAS  PubMed  Google Scholar 

  135. Allard M, Schonekess B, Henning S, English D, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol-Heart Circul Physiol. 1994;267(2):H742–50.

    Article  CAS  Google Scholar 

  136. Schönekess BO, Allard MF, Henning SL, Wambolt RB, Lopaschuk GD. Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart. Circ Res. 1997;81(4):540–9.

    Article  PubMed  Google Scholar 

  137. Wambolt RB, Henning SL, English DR, Dyachkova Y, Lopaschuk GD, Allard MF. Glucose utilization and glycogen turnover are accelerated in hypertrophied rat hearts during severe low-flow ischemia. J Mol Cell Cardiol. 1999;31(3):493–502.

    Article  CAS  PubMed  Google Scholar 

  138. Morissette MR, Howes AL, Zhang T, Brown JH. Upregulation of GLUT1 expression is necessary for hypertrophy and survival of neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2003;35(10):1217–27.

    Article  CAS  PubMed  Google Scholar 

  139. Keller A, Rouzeau J-D, Farhadian F, Wisnewsky C, Marotte F, Lamande N, et al. Differential expression of alpha-and beta-enolase genes during rat heart development and hypertrophy. Am J Physiol-Heart Circul Physiol. 1995;269(6):H1843–51.

    Article  CAS  Google Scholar 

  140. Choi Y-H, Cowan DB, Nathan M, Poutias D, Stamm C, Pedro J, et al. Myocardial hypertrophy overrides the angiogenic response to hypoxia. PLoS One. 2008;3(12):e4042.

    Google Scholar 

  141. Minchenko O, Opentanova I, Caro J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase gene family (PFKFB-1–4) expression in vivo. FEBS Lett. 2003;554(3):264–70.

    Article  CAS  PubMed  Google Scholar 

  142. Bishop SP, Altschuld RA. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am J Physiol-Legacy Content. 1970;218(1):153–9.

    Article  CAS  Google Scholar 

  143. Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J Biol Chem. 2006;281(14):9030–7.

    Article  CAS  PubMed  Google Scholar 

  144. Evans RK, Schwartz DD, Gladden LB. Effect of myocardial volume overload and heart failure on lactate transport into isolated cardiac myocytes. J Appl Physiol. 2003;94(3):1169–76.

    Article  PubMed  Google Scholar 

  145. Schonekess B, Allard M, Lopaschuk G. Recovery of glycolysis and oxidative metabolism during postischemic reperfusion of hypertrophied rat hearts. Am J Physiol-Heart Circul Physiol. 1996;271(2):H798–805.

    Article  CAS  Google Scholar 

  146. Kim J-w, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.

    Google Scholar 

  147. El Alaoui-Talibi Z, Guendouz A, Moravec M, Moravec J. Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine. Am J Physiol-Heart Circul Physiol. 1997;272(4):H1615–24.

    Article  Google Scholar 

  148. el Alaoui-Talibi Z, Landormy S, Loireau A, Moravec J. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Physiol-Heart Circul Physiol. 1992;262(4):H1068–74.

    Article  Google Scholar 

  149. van Bilsen M, Smeets PJ, Gilde AJ, van der Vusse GJ. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res. 2004;61(2):218–26.

    Article  PubMed  CAS  Google Scholar 

  150. van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. 2000;45(2):279–93.

    Article  PubMed  Google Scholar 

  151. Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999;21(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  152. Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JR, Belke DD, et al. A role for peroxisome proliferator-activated receptor α (PPARα) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARα are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem. 2002;277(6):4098–103.

    Article  CAS  PubMed  Google Scholar 

  153. Young ME, Patil S, Ying J, Depre C, Singh AH, Shipley GL, et al. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor α in the adult rodent heart. FASEB J. 2001;15(3):833–45.

    Article  CAS  PubMed  Google Scholar 

  154. Liang F, Wang F, Zhang S, Gardner DG. Peroxisome proliferator activated receptor (PPAR) α agonists inhibit hypertrophy of neonatal rat cardiac myocytes. Endocrinology. 2003;144(9):4187–94.

    Article  CAS  PubMed  Google Scholar 

  155. Smeets PJ, Teunissen BE, Planavila A, de Vogel-van den Bosch H, Willemsen PH, van der Vusse GJ, et al. Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARα and PPARδ. J Biol Chem. 2008;283(43):29109–18.

    Google Scholar 

  156. Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med. 2004;10(11):1245–50.

    Article  CAS  PubMed  Google Scholar 

  157. Planavila A, Laguna JC, Vázquez-Carrera M. Nuclear factor-κB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy. J Biol Chem. 2005;280(17):17464–71.

    Article  CAS  PubMed  Google Scholar 

  158. Planavila A, Rodríguez-Calvo R, Jové M, Michalik L, Wahli W, Laguna JC, et al. Peroxisome proliferator-activated receptor β/δ activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc Res. 2005;65(4):832–41.

    Article  CAS  PubMed  Google Scholar 

  159. Pellieux C, Montessuit C, Papageorgiou I, Lerch R. Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-α. Cardiovasc Res. 2009;82(2):341–50.

    Article  CAS  PubMed  Google Scholar 

  160. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, et al. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. J Clin Investig. 2007;117(12):3930–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekharan C. Kartha .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kartha, C.C. (2021). Response of Cardiomyocytes to Mechanical Stress. In: Cardiomyocytes in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-85536-9_8

Download citation

Publish with us

Policies and ethics

Navigation