Mechanisms Involved with Bacilli-Mediated Biotic and Abiotic Stress Tolerance in Plants

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Due to increased demand for food and feed, plants are being grown in marginal lands dominated by abiotic stresses. These abiotic stresses predispose plants to biotic stresses compromising the yield and quality. Mitigation efforts of these stresses with synthetic chemicals further complicated the situation. However, use of beneficial microbes opened a new horizon for managing these stresses in the agricultural ecosystem. To date, an appreciable amount of research elucidated the underlying mechanisms how these microbes, especially numerous species belonging to the genus Bacillus, play a positive role in mitigating these stresses. Colonization of plant rhizosphere or phyllosphere by these microbes contributes to alleviating these stresses through up- or downregulation of major metabolic pathways in plants. Regulation of metabolic pathway helps in reducing/neutralizing the level of stressors or inducing plants to overproduce stress-mitigating biochemicals. This chapter compiles all the major mechanisms pertaining to biotic and abiotic stress alleviation in plants by Bacilli to aid in elucidating more complex mechanisms by future research endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdalla MY (2015) Biological control and induction of systemic resistance against cucumber Fusarium wilt by plant growth promoting rhizo-organisms. Egypt J Biol Pest Cont 25:407–413

    Google Scholar 

  • Adam M, Heuer H, Hallmann J (2014) Bacterial antagonists of fungal pathogens also controls root-knot nematodes by induced systemic resistance of tomato plants. PLoS One 9:e90402. https://doi.org/10.1371/journal.pone.0090402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Naveed M, Mitter B, Sessitsch A (2014) Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ Sci Pollut Res 21:11054–11065. https://doi.org/10.1007/s11356-014-3010-9

    Article  CAS  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868

    Article  PubMed  PubMed Central  Google Scholar 

  • Ajilogba CF, Babalola OO (2013) Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci 18:117–127

    Article  PubMed  Google Scholar 

  • Akgul DS, Mirik M (2008) Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. J Plant Pathol 90:29–34

    Google Scholar 

  • Akram W, Anjum T, Ali B (2016) Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium wilt. Front Plant Sci 7:498. https://doi.org/10.3389/fpls.2016.00498

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam M, Khaliq A, Sattar A, Shukla RS, Anwar M, Dharni S (2011) Synergistic effect of arbuscular mycorrhizal fungi and Bacillus subtilis on the biomass and essential oil yield of rose-scented geranium (Pelargonium graveolens). Arch Agron Soil Sci 57(8):889–898

    Article  Google Scholar 

  • Almoneafy AA, **e GL, Tian WX, Xu LH, Zhang GQ, Ibrahim M (2012) Characterization and evaluation ofB acillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt. African Journal of Biotechnology 11:7193-7201

    Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7. https://doi.org/10.1016/j.scienta.2006.02.019

    Article  Google Scholar 

  • Allard-Massicotte R, Tessier L, Lecuyer F, Lakshmanan V, Lucier J, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involve multiple chemotaxis receptors. mBio 7: e01664-16. https://doi.org/10.1128/mBio.01664-16

  • Almoguera C, Coca MA, Jordano J (1995) Differential accumulation of sunflower tetraubiquitin mRNAs during zygotic embryogenesis and developmental regulation of their heat-shock response. Plant Physiol 107:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altenbach D, Robatzek S (2007) Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol Plant-Microbe Interact 20:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Gill SS, Gill R (2014) Plant adaptation to environmental change: significance of amino acids and their derivatives, 1st edn. CABI, Wallingford. https://doi.org/10.1079/9781780642734.0000

    Book  Google Scholar 

  • Arrizubieta M, Williams T, Caballero P, Simón O (2014) Selection of a nucleopolyhedrovirus isolate fromH elicoverpa armigera as the basis for a biological insecticide. Pest Manag Sci 70:967–976

    Google Scholar 

  • Araus JL, Slaffer GA, Reynolds SMP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940. https://doi.org/10.1093/aob/mcf049

    Article  PubMed  PubMed Central  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martynenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhances plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Arora NK, FatimamT MJ, Mishra I, Verma S, Verma R, Verma M, AnkitaBhattacharya A, Verma P, Mishra P, Bharti C (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82

    Article  Google Scholar 

  • Arthur E, Moldrup P, Holmstrup M, Schjonning P, Winding A, Mayer P et al (2012) Soil microbial and physical properties and their relations along a steep copper gradient. Agricult Ecosys Environ 159:9–18. https://doi.org/10.1016/j.agee.2012.06.021

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environmental and Experimental Botany 59:206-216 https://doi.org/10.1016/j.envexpbot.2005.12.006

  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manag 198:132–143. https://doi.org/10.1016/j.jenvman.2017.04.060

    Article  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Aydi-Ben-Abdallah R, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Solanum elaeagnifolium stems. J Phytopathol 164:811–824. https://doi.org/10.1111/jph.12501

    Article  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32: 809–822

    Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514. https://doi.org/10.1111/ppl.12614

  • Benedetto NA, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, Flagella Z (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol 3(3):413–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Khedher S, Boukedi H, Kilani-Feki O, Chaib I, Laarif A, Abdelkefi-Mesrati L et al (2015) Bacillus amyloliquefaciens AG1 biosurfactant: putative receptor diversity and histopathological effects on Tuta absoluta midgut. J Invertebr Pathol 132 42–47. https://doi.org/10.1016/j.jip.2015.08.010

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol (1):84, 11–88

    Google Scholar 

  • Blagodatskaya EV, Pampura TV, Myakshina TN, Dem Yanova EG (2006) The influence of lead on the respiration and biomass of microorganisms in gray forest soil in a long-term field experiment. Eurasian Soil Sci 39:498–506

    Article  Google Scholar 

  • Bochow H, El-Sayed SF, Junge H, Stavropoulou A, Schmiedeknecht G (2001) Use of Bacillus subtilis as biocontrol agent IV salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Z Pflanzenkrankh. Pflanzenschutz 108(1):21–30

    CAS  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604. https://doi.org/10.1111/j.1574-6976.1997.tb00340.x

    Article  CAS  Google Scholar 

  • Boukedi H, Sellami S, Ktari S, Belguith-Ben-Hassan N, Sellami-Boudawara T, Tounsi S et al (2016) Isolation and characterization of a new Bacillus thuringiensis strain with a promising toxicity against Lepidopteran pests. Microbiol Res 186–187:9–15. https://doi.org/10.1016/j.micres.2016.02.004

    Article  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Maryland, pp 1158–1203

    Google Scholar 

  • Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci U S A 103(41):15196–15199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunetti G, Farrag K, Soler-Rovira P, Ferrara M, Nigro F, Senesi N (2012) The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three brassicaceae species from contaminated soils in the Apulia region, Southern Italy. Geoderma 170:322–330. https://doi.org/10.1016/j.geoderma.2011.11.029

    Article  CAS  Google Scholar 

  • Calvo P, Ormeno-Orrillo E, Martinez-Romero E, Zuniga D (2010) Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics. Braz J Microbiol 41:899–906

    Article  PubMed  PubMed Central  Google Scholar 

  • Cawoy H, Debois D, Franzil L, Pauw ED, Thonart P, Ongena M (2014) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8:281–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In pesticides in the modern world – pesticides use and management. Available: https://www.intechopen.com/books/pesticides-in-the-modern-world-pesticides-use-and-management/bacillus-based-biological-control-of-plant-diseases

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264. https://doi.org/10.1071/FP02076

    Article  CAS  PubMed  Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt- tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Vand Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R et al (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864. https://doi.org/10.1111/j.1462-2920.2012.02860.x

    Article  PubMed  Google Scholar 

  • Chodak M et al (2015) Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Annal Microbiol 65:1627–1637

    Article  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiological Research 164:493–513. https://doi.org/10.1016/j.micres.2008.08.007

  • Chowdappa P, Mohan-Kumar SP, Jyothi-Lakshmi M, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009

    Article  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015b) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review. Front Microbiol 6:780. https://doi.org/10.3389/fmicb.2015.00780

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alqueres S, Pittroff S, Dietel K et al (2015a) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defence responses towards the bottom rot pathogen Rhizoctonia solani. Mol Plant Microb Interact 28:17–18. https://doi.org/10.1094/MPMI-03-15-0066-R

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, CMJ P, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B, Prime A (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Crane TA, Roncoli C, Hoogenboom G (2011) Adaptation to climate change and climate variability: the importance of understanding agriculture as performance. NJAS Wag J Life Sci 57:179–185

    Article  Google Scholar 

  • Debono M, Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 48:471–497

    Article  CAS  PubMed  Google Scholar 

  • Defuria, MD, Claridge CA (1976) Aminoglycoside antibiotics produced by the genus Bacillus. In: Schlessinger M (ed) Microbiology. American Society of Microbiology, Washington, D.C, pp 421–436

    Google Scholar 

  • Dihazi A, Jaiti F, Jaoua S, Driouich A, Baaziz M, Daayf F, Serghini MA (2012) Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings. Plant Physiol Biochem 55:7–15

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Wasiullah Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability (Switzerland) 7(2):2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  • Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887. https://doi.org/10.3389/fmicb.2017.01887

    Article  PubMed  PubMed Central  Google Scholar 

  • Elshakh ASA, Anjum SI, Qiu W, Almoneafy AA, Li W, Yang Z et al (2016) Controlling and defence-related mechanisms of bacillus strains against bacterial leaf blight of rice. J Phytopathol 164:534–546. https://doi.org/10.1111/jph.12479

    Article  CAS  Google Scholar 

  • ENS (2006) Environment news service: report list world’s 10 worst pollution spots. Available at: http://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCgQFjAB&url=http%3A%2F%2Fwww.chem.unep.ch%2Fpb_and_cd%2FDocuments%2FNews%2F10%2520most%2520polluted%2520cities.pdf&ei=1zZgVb2iOKKR7AaMoIAo&usg=AFQjCNHOAyar_69TBPA143KXTt-cAvkP3g&sig2=_lTZpa2YQnsF0slt0Xm7ew&bvm=bv.93990622,d.ZGU

  • Esawy MA, Ahmed EF, Helmy WA, Mansour NM, El-Senousy WM, El-Safty MM (2011) Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans. Carbohydr Polym 86:823–830. https://doi.org/10.1016/j.carbpol.2011.05.035

    Article  CAS  Google Scholar 

  • FAO (2016) Available online: http://www.fao.org/3/a-i6030e.pdf (2016)

  • Gagne-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584. https://doi.org/10.3389/fpls.2016.00584

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117. https://doi.org/10.1139/m95-015

    Article  CAS  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus icheniformis A2. Microbiol Res 169:66–75

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC, Tejada MM (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  • GroBkinsky DK, Tafner R, Moreno MV, Stenglein SA, De Salamone IEG, Nelson LM, Roitsch T (2016) Cytokinin production by Pseudomonas fluorescens G20–18 determines biocontrol activity against Pseudomonas syringae. Arabidopsis Sci Rep 6:23310

    Article  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Guo L, Rasool A, Li C (2013) Antifungal substrates of bacterial origin and plant disease management in bacteria. In: Maheshwari DK (ed) Agrobiology disease management. Springer, Heidelberg, pp 473–485

    Chapter  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haggag WM (2008) Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Biocontrol Sci Tech 41:477–491

    CAS  Google Scholar 

  • Han Y, Zhang B, Shen Q, You C, Yu Y, Li P et al (2015) Purification and identification of two antifungal cyclic peptides produced by bacillus amyloliquefaciens L-H15. Appl Biochem Biotechnol 176:2202–2212. https://doi.org/10.1007/s12010-015-1708-x

    Article  CAS  PubMed  Google Scholar 

  • Handelsmann J, Stabb EV (1996) Biocontrol of soilborne pathogens. Plant Cell 8:1855–1869

    Article  Google Scholar 

  • Hao Y, Wu H, Liu Y, Hu Q (2015) Mitigative effect of Bacillus subtilis QM3 on root morphology and resistance enzyme activity of wheat root under lead stress. Adv Microbiol 5:469–478

    Article  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment 21:535–553

    Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Al-Huqail AA, Alshalawi SRM, Wirth S et al (2015) Impact of plant growth promoting Bacillus subtilis on growth and physiological parameters of Bassia indica (Indian bassia) grown under salt stress. Pak J Bot 47:1735–1741

    Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016a) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089. https://doi.org/10.3389/fmicb.2016.01089

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Al-Huqail AA, Shah MA (2016b) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii benth. By arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Bio Med Res Int 2016:6294098. https://doi.org/10.1155/2016/6294098

  • Hashem A, Tabassum B, Fathi Abd Allahd E (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297

    Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512. https://doi.org/10.1093/aob/mcf076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinarejos E, Castellano M, Rodrigo I, Belles JM, Conejero V, Lopez-Gresa MP et al (2016) Bacillus subtilis IAB/BS03 as a potential biological control agent. Eur J Plant Pathol 146: 597–608. https://doi.org/10.1007/s10658-016-0945-3

  • Hu N, Zheng JF, Ding DX, Liu J, Yang LQ, Yin J et al (2009) Metal pollution in Huayuan river in Hunan province in China by manganese sulphate waste residue. Bull Environ Contamin Toxicol 83:583–590. https://doi.org/10.1007/s00128-009-9802-9

    Article  CAS  Google Scholar 

  • Huang J, Wei Z, Tan S, Mei X, Shen Q, Xu Y (2014) Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62. J Agric Food Chem 62:10708–10716. https://doi.org/10.1021/jf503136a

    Article  CAS  PubMed  Google Scholar 

  • Hussey RS, McGuire JM (1987) Interactions with other organisms. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic, Marrickville, pp 294–320

    Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2013) Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. J. Plant Growth Regul 32:388–398. https://doi.org/10.1007/s00344-012-9307-3

    Article  CAS  Google Scholar 

  • Jain A, Singh A, Singh S, Singh V, Singh HB (2015) Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum. J Plant Physiol 182:79–94. https://doi.org/10.1016/j.jplph.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH (2016) Can arbuscular mycorrhizal fungi reduce cd uptake and alleviate cd toxicity of Lonicera japonica grown in cd-added soils? Sci Rep 6:21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, Lee KE, You YH, Ko JH, Kim JH et al (2015a) Mechanism of plant growth promotion elicited by Bacillus sp. LKE15 in oriental melon. Acta Agric Scand Sect B Soil Plant Sci 65:637–647. https://doi.org/10.1080/09064710.2015.1040830

    Article  CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Khan AL, Lee KE, Lee JD et al (2015c) Enterobacter asburiae KE17 association regulates physiological changes and mitigates the toxic effects of heavy metals in soybean. Plant Biol 17: 1013–1022. doi: https://doi.org/10.1111/plb.12341

  • Katz E, Demain AL (1977) The peptide antibiotics of Bacillus. Bacteriol Rev 41:449–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Kumar S, Nayyar H, Upadhyaya HD (2008) Cold stress injury during the pod-filling phase in Chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. J Agron Crop Sci 194:457–464

    Google Scholar 

  • Kaushal M, Wani SP (2015) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):1–8. https://doi.org/10.1007/s13213-015-1112-3

    Article  CAS  Google Scholar 

  • Koca H, Bor L, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front Plant Sci 7:1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2013) Rising temperature in the changing environment: a serious threat to plants. Climate Change Environ Sustain 1:25–36. https://doi.org/10.5958/j.2320-6411.1.1.004

    Article  Google Scholar 

  • Kleinwechter U, Gastelo M, Ritchie J, Nelson G, Asseng S (2016) Simulating cultivar variations in potato yields for contrasting environments. Agric Syst 145:51–63. https://doi.org/10.1016/j.agsy.2016.02.011

    Article  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot doi. https://doi.org/10.1093/jxb/err460

  • Krid S, Triki MA, Gargouri A, Rhouma A (2012) Biocontrol of olive knot disease by Bacillus subtilis isolated from olive leaves. Ann Microbiol 62:149–154. https://doi.org/10.1007/s13213-011-0239-0

    Article  Google Scholar 

  • Kumar L, Bharadvaja N (2020) Microbial remediation of heavy metals. In: Shah M (ed) Microbial bioremediation and biodegradation. Springer, Singapore, pp 49–72

    Chapter  Google Scholar 

  • Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova D, Khairullin R, Aliniaeifard S (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80–88

    Article  CAS  PubMed  Google Scholar 

  • Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 Potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Loeffler W, Kratzer W, Kremer S, Kugler M, Petersen F, Jung G, Rapp C, Tschen JSM (1990) Gegen Pilze wirksame Antibiotika der Bacillus subtilis-Gruppe. Forum Mikrobiologie 3:156–163

    Google Scholar 

  • Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R et al (2013) The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol 97:10081–10090. https://doi.org/10.1007/s00253-013-5247-5

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotfi N, Vahdati K, Amiri R, Kholdebarin B, Mcneil DL (2010) Drought-induced accumulation of sugars and proline in radicle and plumule of tolerant walnut varieties during germination phase. Acta Hortic 861:289–296

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth-promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837. https://doi.org/10.1016/j.jenvman.2008.01.014

    Article  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 1–19. https://doi.org/10.1007/978-1-4614-0634-1_1

    Chapter  Google Scholar 

  • Marchenko AM, Pshinko GN, Demchenko VY, Goncharuk VV (2015) Leaching heavy metal from deposits of heavy metals with bacteria oxidizing elemental Sulphur. J Water Chem Technol 37:311–316

    Article  Google Scholar 

  • Mihalache G, Balaes T, Gostin I, Stefan M (2017) Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ Sci Pollut Res 25:29784–29793

    Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50:263–272. https://doi.org/10.1007/s11099-012-0032-8

    Article  CAS  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101:1–8

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E (2015) Effect of specific plant-growth-promoting rhizobacteria (PGPR) on growth and uptake of neonicotinoid insecticide thiamethoxam in corn (Zea mays L.) seedlings. Pest Manag Sci 71:1258–1266. https://doi.org/10.1002/ps.3919

    Article  CAS  PubMed  Google Scholar 

  • Nabti E, Schmid M, Hartmann A (2015) Application of halotolerant bacteria to restore plant growth under salt stress. In: Maheshwari DK, Saraf M (eds) Halophiles biodiversity and sustainable exploitation. Springer, Cham, pp 235–259

    Chapter  Google Scholar 

  • Narasimhan A, Shivakumar S (2015) Evaluation of Bacillus subtilis (JN032305) biofungicide to control chilli anthracnose in pot-controlled conditions. Biocontrol Sci Tech 25:543–559. https://doi.org/10.1080/09583157.2014.996737

    Article  Google Scholar 

  • Naseem S, Yasin M, Faisal M, Ahmed A (2016) Comparative study of plant growth promoting bacteria in minimizing toxic effects of chromium on growth and metabolic activities in wheat (Triticum aestivum). J Chem Soc Pak 38(3):509–516

    CAS  Google Scholar 

  • Navon A (2000) Bacillus thuringiensis insecticides in crop protection — reality and prospects. Crop Protection 19:669–676

    Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, ** HL et al (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542. https://doi.org/10.1094/MPMI-09-10-0213

    Article  CAS  PubMed  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Al-Harrasi A (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32. https://doi.org/10.1016/j.micres.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16: 115–125. pmid:18289856

    Google Scholar 

  • Ongena M, Jourdan E, Adam A et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9(4):1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Saghir Khan M, Huda Qari A, Nadeen Felemban M, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodegr 7:334. https://doi.org/10.4172/2155-6199.1000334

    Article  CAS  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers Plant Sci 8(art. no. 537). https://www.frontiersin.org/articles/10.3389/fpls.2017.00537/full

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:–1123. https://doi.org/10.3389/fpls.2016.01123

  • Perez-Garcia A, Romero D, Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol Plant Anal 43(12):1658–1673

    Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi, a review. Agron Sustain Dev 32:181–200. https://doi.org/10.1007/s13593-011-0029-x

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013) Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.) by spermidine promotes plant growth against salt stress. Acta Physiol Plant 35(12):3315–3322. https://doi.org/10.1007/s11738-013-1364-0

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2014) Effect of low dose of spermidine on physiological changes in salt stressed cucumber plants. Russ J Plant Physiol 61:90–96. https://doi.org/10.1134/S1021443714010129

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan R, Kang SM, Baek IY, Lee IJ (2014) Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. J Plant Interact 9:754–762. https://doi.org/10.1080/17429145.2014.930524

    Article  CAS  Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Horticult 129:232–237. https://doi.org/10.1016/j.scienta.2011.03.035

    Article  CAS  Google Scholar 

  • Rahman A, Uddin W, Wenner NG (2015) Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol Plant Pathol 16:546–558. https://doi.org/10.1111/mpp.12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plantarum 45:481–487

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh JY, Choi JY, Li MS, ** BR Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17(4):547

    Google Scholar 

  • Saikia J, Sarma R K, Dhandia R, Yadav A, Bharali R, Gupta V K et al. (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. S. cRi ep. 8:3560. https://doi.org/10.1038/s41598-018-21921-w

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Shin M, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199:314–320

    Article  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schonbeck FU, Steiner U, Kraska T (1993) Induced resistance: criteria, mechanisms, practicalapplications and estimation. Journal of Plant Diseases and Protection 100:541–557

    Google Scholar 

  • Schwessinger B, Ronald PC (2012) Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol 63:451–482. https://doi.org/10.1146/annurev-arplant-042811-105518

    Article  CAS  PubMed  Google Scholar 

  • Singla J, Krattinger SG (2016) Biotic stress resistance genes in wheat. In: Wrigley CW, Faubion J, Corke H, Seetharaman K (eds) Encyclopedia of food grains. Elsevier, Oxford, pp 388–392

    Chapter  Google Scholar 

  • Solanki MK, Robert AS, Singh RK, Kumar S, Pandey AK, Srivastava AK et al (2012) Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr Microbiol 65:330–336. https://doi.org/10.1007/s00284-012-0160-1

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454–1463. https://doi.org/10.1016/j.chemosphere.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  • Tonelli ML, Taurian T, Ibanez F, Angelini J, Fabra A (2010) Selection and in vitro characterization of biocontrol agents with potential to protect peanut plants against fungal pathogens. J Plant Pathol 92:73–82

    Google Scholar 

  • Treesubsuntorn C, Dhurakit P, Khaksar G, Thiravetyan P (2017) Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environ Sci Pollut Res:1–12

    Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77. https://doi.org/10.1146/annurev.phyto.39.1.53

    Article  CAS  PubMed  Google Scholar 

  • Turan M, Gulluce M, Åžahin F (2012) Effects of plant-growth-promoting rhizobacteria on yield, growth, and some physiological characteristics of wheat and barley plants. Commun Soil Sci Plant Anal 43(12):1658–1673

    Article  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21(5):573

    Article  PubMed Central  Google Scholar 

  • Waewthongrak W, Pisuchpen S, Leelasuphakul W (2015) Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biol Technol 99:44–49

    Article  CAS  Google Scholar 

  • Wang H, Xu R, You L, Zhong G (2013) Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. Ecotoxicol Environ Saf 94:1–7. https://doi.org/10.1016/j.ecoenv.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  • Wang S (2009) Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 19:1250–1258. https://doi.org/10.4014/jmb.0901.008

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo J, Liu R (2001) Biosorption of heavy metals by bacteria isolated from activated sludge. Appl Biochem Biotechnol 91–93:171–184

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM, Thomashow LS (1993) Microbial metabolites with biological activity against plant pathogens. In: Lumsden RD, Vaughn JL (eds) Pest management: biologically based technologies, Amer Chem Soc, Washington, DC, pp173–180

    Google Scholar 

  • Wierzba S (2015) Biosorption of lead(II), zinc(II) and nickel(II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis. Pol. J. Chem. Technol 17:79–87

    Google Scholar 

  • Wolter and Schroeder (2012) Effect of drought stress on the productivity of ivy treated with rhizobacterium Bacillus subtilis. In: Proceedings of the international symposium on soilless cultivation 1004, Shanghai, pp107–113

    Google Scholar 

  • Wu S, Cao Z, Li Z, Cheung K, Wong M (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166. https://doi.org/10.1016/j.geoderma.2004.07.003

    Article  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Yazici I, Turkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 62:49–57. https://doi.org/10.1016/j.envexpbot.2007.02.010

    Article  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353. https://doi.org/10.1128/AEM.69.12.7343-7353.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi HS, Yang JW, Ryu CM (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122. https://doi.org/10.3389/fpls.2013.00122

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Z, **ong J, Zhou Q, Luo H, Hu S, **a L et al (2015) The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. J Invertebr Pathol 125:73–80. https://doi.org/10.1016/j.jip.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744

    Article  PubMed  Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2004) Tobacco growth enhancement and blue mold disease protection by rhizobacteria: relationship between plant growth promotion and systemic disease protection by PGPR strain 90–166. Plant Soil 262:277–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahfuz Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M., Miah, M.N.A., Dudding, W. (2022). Mechanisms Involved with Bacilli-Mediated Biotic and Abiotic Stress Tolerance in Plants. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_8

Download citation

Publish with us

Policies and ethics

Navigation