The Contribution of Viruses to Immune Systems

  • Chapter
  • First Online:
The Biological Role of a Virus

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 9))

  • 865 Accesses

Abstract

Cellular organisms have evolved a plethora of immune systems to defend against selfish genetic elements and pathogens, including viruses. Virus-derived and virus-related sequences (such as those of mobile genetic elements) constitute a substantial portion of the genomes of all life forms. Some of these sequences mediate resistance to viruses or virus-like parasites and are integral components of many immune systems acting against various invaders (viral and cellular), such as the Rag1/2 system of vertebrates, which generates antibody and T cell receptor diversity. Recently, intimate evolutionary relationships between viral and virus-like sequences and various cellular immune pathways of both pro- and eukaryotes have been uncovered. Here, I argue that the most basic—and likely evolutionarily the first—immune system may be the superinfection exclusion (SIE) mechanism, a phenomenon where one parasitic element (a virus or virus-like entity) prevents or restricts invasion of a compartment (e.g., a cell) by another parasitic element. The SIE mechanism is still a feature of many extant viruses and the related viroids, which are putative relics of an ancient RNA world that existed before the emergence of cells. During cellular evolution, various more complex immune mechanisms fully or partially derived from viruses and virus-like element have evolved. In this chapter, I summarize the current knowledge on the contribution of viral and virus-like elements to the evolution of various cellular immune systems. The emerging picture is that many of today’s cellular immune systems have evolved from simple SIE mechanisms to highly complex defense strategies, frequently involving viral or virus-like sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson KV, Bokla C, Nüsslein-Volhard C (1985a) Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42:791–798

    Article  CAS  PubMed  Google Scholar 

  • Anderson KV, Jürgens G, Nüsslein-Volhard C (1985b) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789

    Article  CAS  PubMed  Google Scholar 

  • Armezzani A, Varela M, Spencer TE et al (2014) “Ménage à Trois”: the evolutionary interplay between JSRV, enJSRVs and domestic sheep. Viruses 6:4926–4945

    Article  PubMed  PubMed Central  Google Scholar 

  • Aswad A, Katzourakis A (2014) The first endogenous herpesvirus, identified in the tarsier genome, and novel sequences from primate rhadinoviruses and lymphocryptoviruses. PLoS Genet 10:e1004332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baccetti B, Benedetto A, Burrini A et al (1994) HIV-particles in spermatozoa of patients with AIDS and their transfer into the oocyte. J Cell Biol 127:903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baccetti B, Benedetto A, Collodel G et al (1998) The debate on the presence of HIV-1 in human gametes. J Reprod Immunol 41:41–67

    Article  CAS  PubMed  Google Scholar 

  • Bagasra O, Farzadegan H, Sehsamma T et al (1994) Detection of HIV-1 proviral DNA in sperm from HIV-1-infected men. AIDS 8:1669–1674

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Baker ML, Kulcsar K et al (2020) Novel Insights Into Immune Systems of Bats. Front Immunol 11:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barboza JM, Medina H, Doria M et al (2004) Use of atomic force microscopy to reveal sperm ultrastructure in HIV-patients on highly active antiretroviral therapy. Arch Androl 50:121–129

    Article  CAS  PubMed  Google Scholar 

  • Barr JJ, Auro R, Furlan M et al (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci USA 110:10771–10776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayne CJ (2003) Origins and evolutionary relationships between the innate and adaptive arms of immune systems. Integr Comp Biol 43:293–299

    Article  CAS  PubMed  Google Scholar 

  • Bell PJL (2020) Evidence supporting a viral origin of the eukaryotic nucleus. Virus Res 289:198168

    Article  CAS  PubMed  Google Scholar 

  • Belshaw R, Pereira V, Katzourakis A et al (2004) Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci USA 101:4894–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belyi VA, Levine AJ, Skalka AM (2010a) Sequence from ancestral single-stranded DNA viruses in vertebrate genomes: the parvoviridae and circoviridae are more than 40 to 50 million years old. J Virol 84:12458–12462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belyi VA, Levine AJ, Skalka AM (2010b) Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/Marburgvirus sequences in vertebrate genomes. PLoS Pathog 6:e1001030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berrens RV, Andrews S, Spensberger D et al (2017) An endosiRNA-based repression mechanism counteracts transposon activation during global DNA demethylation in embryonic stem cells. Cell Stem Cell 21:694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best S, Le Tissier P, Towers G et al (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382:826–829

    Article  CAS  PubMed  Google Scholar 

  • Biryukov J, Meyers C (2018) Superinfection exclusion between two high-risk human papillomavirus types during a coinfection. J Virol 92:e01993–e01917

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Gallot-Lavallée L, Maumus F (2015) Provirophages in the Bigelowiella genome bear testimony to past encounters with giant viruses. Proc Natl Acad Sci USA 112:E5318–E5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Melo D, Gifford RJ, Bieniasz PD (2017) Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors. eLife 6:e22519

    Article  PubMed  PubMed Central  Google Scholar 

  • Boehm T, McCurley N, Sutoh Y et al (2012) VLR-based adaptive immunity. Annu Rev Immunol 30:203–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondy-Denomy J, Qian J, Westra ER et al (2016) Prophages mediate defense against phage infection through diverse mechanisms. ISME J 10:2854–2866

    Article  PubMed  PubMed Central  Google Scholar 

  • Born D, Reuter L, Mersdorf U et al (2018) Capsid protein structure, self-assembly, and processing reveal morphogenesis of the marine virophage mavirus. Proc Natl Acad Sci USA 115:7332–7337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brightman BK, Li QX, Trepp DJ et al (1991) Differential disease restriction of Moloney and Friend leukemia viruses by the mouse Rcmf gene is governed by the viral long terminal repeat. J Exp Med 174:389–396

    Article  CAS  PubMed  Google Scholar 

  • Broecker F, Moelling K (2019a) What viruses tell us about evolution and immunity: beyond Darwin? Ann N Y Acad Sci USA 1447:53–68

    Article  Google Scholar 

  • Broecker F, Moelling K (2019b) Evolution of immune systems from viruses and transposable elements. Front Microbiol 10:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnet FM, Fenner F (1949) The production of antibodies, 2nd edn. Macmillan, Melbourne, Australia

    Google Scholar 

  • Canchaya C, Proux C, Fournous G et al (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canchaya C, Fournous G, Brüssow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18

    Article  CAS  PubMed  Google Scholar 

  • Cardona-Maya W, Velilla P, Montoya CJ et al (2009) Presence of HIV-1 DNA in spermatozoa from HIV-positive patients: changes in the semen parameters. Curr HIV Res 7:418–424

    Article  CAS  PubMed  Google Scholar 

  • Cardona-Maya W, Velilla PA, Montoya CJ et al (2011) In vitro human immunodeficiency virus and sperm cell interaction mediated by the mannose receptor. J Reprod Immunol 92:1–7

    Article  CAS  PubMed  Google Scholar 

  • Chu H, Jo Y, Cho WK (2014) Evolution of endogenous non-retroviral genes integrated into plant genomes. Curr Plant Biol 1:55–59

    Article  Google Scholar 

  • Chung IY, Jang HJ, Bae HW et al (2014) A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly. Proc Natl Acad Sci USA 111:11503–11508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuong EB, Elde NC, Feschotte C (2016) Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351:1083–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cianciolo GJ, Copeland TD, Oroszlan S et al (1985) Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 230:453–455

    Article  CAS  PubMed  Google Scholar 

  • Citti L, Rainaldi G (2005) Synthetic hammerhead ribozymes as therapeutic tools to control disease genes. Curr Gene Ther 5:11–24

    Article  CAS  PubMed  Google Scholar 

  • Colson P, Ravaux I, Tamalet C et al (2014) HIV infection en route to endogenization: two cases. Clin Microbiol Infect 20:1280–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815–822

    Article  CAS  PubMed  Google Scholar 

  • Cornelis G, Funk M, Vernochet C et al (2017) An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. Proc Natl Acad Sci USA 114:E10991–E11000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Holmes EC (2012) Endogenous lentiviruses in the ferret genome. J Virol 86:3383–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen BR, Cherry S, tenOever BR (2013) Is RNA interference a physiologically relevant innate immune response in mammals? Cell Host Microbe 14:374–378

    Article  CAS  PubMed  Google Scholar 

  • da Fonseca GC, de Oliveira LFV, de Morais GL et al (2016) Unusual RNA plant virus integration into the soybean genome leads to the production of small RNAs. Plant Sci 246:62–69

    Article  PubMed  CAS  Google Scholar 

  • de Koning AP, Gu W, Castoe TA et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diener TO (1989) Circular RNAs: relics of precellular evolution? Proc Natl Acad Sci USA 86:9370–9374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doron S, Melamed S, Ofir G et al (2018) Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:eaar4120

    Google Scholar 

  • Dunlap KA, Palmarini M, Varela M (2006) Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci USA 103:14390–14395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enard D, Le C, Gwennap C et al (2016) Viruses are a dominant driver of protein adaptation in mammals. eLife 5:e12469

    Article  PubMed  PubMed Central  Google Scholar 

  • Escalera-Zamudio M, Greenwood AD (2016) On the classification and evolution of endogenous retrovirus: human endogenous retroviruses may not be ‘human’ after all. APMIS 124:44–51

    Article  PubMed  Google Scholar 

  • Ewing RM, Chu P, Elisma F et al (2007) Large-scale map** of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer MG (2020) The virophage family Lavidaviridae. Curr Issues Mol Biol 40:1–24

    PubMed  Google Scholar 

  • Fischer MG, Hackl T (2016) Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540:288–291

    Article  CAS  PubMed  Google Scholar 

  • Fischer MG, Allen MJ, Wilson WH et al (2010) Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci USA 107:19508–19513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores R, Gago-Zachert S, Serra P et al (2014) Viroids: survivors from the RNA world? Annu Rev Microbiol 68:395–414

    Article  CAS  PubMed  Google Scholar 

  • Fu**o K, Horie M, Honda T et al (2014) Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc Natl Acad Sci USA 111:13175–13180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta Y, Abe K, Kobayashi I (2010) Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 38:2428–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge DT, Zamore PD (2013) Small RNA-directed silencing: the fly finds its inner fission yeast? Curr Biol 23:R318–R320

    Article  CAS  PubMed  Google Scholar 

  • Gifford R, Tristem M (2003) The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26:291–315

    Article  CAS  PubMed  Google Scholar 

  • Gifford RJ, Katzourakis A, Tristem M et al (2008) A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci USA 105:20362–20367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert C, Maxfield DG, Goodman SM et al (2009) Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genet 5:e1000425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gogvadze E, Buzdin A (2009) Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 66:3727–3742

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Hernandez MJ, Swanson MD, Contreras-Galindo R et al (2012) Expression of human endogenous retrovirus type K (HML-2) is activated by the Tat protein of HIV-1. J Virol 86:7790–7805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood AD, Ishida Y, O’Brien SP et al (2018) Transmission, evolution, and endogenization: lessons learned from recent retroviral invasions. Microbiol Mol Biol Rev 82:e00044–e00017

    Article  CAS  PubMed  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulino K, Rahman J, Badri M et al (2020) Initial map** of the New York City Wastewater Virome. mSystems 5:e00876-19

    Google Scholar 

  • Han GZ, Worobey M (2012) Endogenous lentiviral elements in the weasel family (Mustelidae). Mol Biol Evol 29:2905–2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han GZ, Worobey M (2015) A primitive endogenous lentivirus in a colugo: insights into the early evolution of lentiviruses. Mol Biol Evol 32:211–215

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi S, Good RA, James-Yarish M et al (1995) Differential modulation of Th1- and Th2-related cytokine mRNA expression by a synthetic peptide homologous to a conserved domain within retroviral envelope protein. Proc Natl Acad Sci USA 92:3611–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haraguchi S, Good RA, Cianciolo GJ et al (1997) Immunosuppressive retroviral peptides: immunopathological implications for immunosuppressive influences of retroviral infections. J Leukoc Biol 61:654–666

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi S, Good RA, Day-Good NK (2008) A potent immunosuppressive retroviral peptide: cytokine patterns and signaling pathways. Immunol Res 41:46–55

    Article  CAS  PubMed  Google Scholar 

  • Hartley JW, Yetter RA, Morse HC III (1983) A mouse gene on chromosome 5 that restricts infectivity of mink cell focus-forming recombinant murine leukemia viruses. J Exp Med 158:16–24

    Article  CAS  PubMed  Google Scholar 

  • Hayward JA, Tachedjian M, Kohl C (2020) Infectious KoRV-related retroviruses circulating in Australian bats. Proc Natl Acad Sci USA 117:9529–9536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille F, Richter H, Wong SP et al (2018) The biology of CRISPR-Cas: backward and forward. Cell 172:1239–1259

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann B, Tappe D, Höper D et al (2015) A variegated squirrel bornavirus associated with fatal human encephalitis. N Engl J Med 373:154–162

    Article  CAS  PubMed  Google Scholar 

  • Horie M (2017) The biological significance of bornavirus-derived genes in mammals. Curr Opin Virol 25:1–6

    Article  CAS  PubMed  Google Scholar 

  • Horie M, Honda T, Suzuki Y et al (2010) Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463:84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Tao X, Yuan S et al (2016) Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166:102–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyndman TH, Shilton CM, Stenglein MD et al (2018) Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathog 14:e1006881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda H, Laigret F, Martin MA et al (1985) Characterization of a molecularly cloned retroviral sequence associated with FV-4 resistance. J Virol 55:768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imakawa K, Nakagawa S (2017) The phylogeny of placental evolution through dynamic integrations of retrotransposons. Prog Mol Biol Transl Sci 145:89–109

    Article  CAS  PubMed  Google Scholar 

  • Iranzo J, Cuesta JA, Manrubia S et al (2017) Disentangling the effects of selection and loss bias on gene dynamics. Proc Natl Acad Sci USA 114:E5616–E5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito J, Watanabe S, Hiratsuka T et al (2013) Refrex-1, a soluble restriction factor against feline endogenous and exogenous retroviruses. J Virol 87:12029–12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito J, Sugimoto R, Nakaoka H et al (2017) Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet 13:e1006883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iwasaki YW, Siomi MC, Siomi H (2015) PIWI-interacting RNA: its biogenesis and functions. Annu Rev Biochem 84:405–433

    Article  CAS  PubMed  Google Scholar 

  • Jebb D, Huang Z, Pippel M et al (2020) Six reference-quality genomes reveal evolution of bat adaptations. Nature 583:578–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez RM, Polanco JA, Lupták A (2015) Chemistry and biology of self-cleaving ribozymes. Trends Biochem Sci 40:648–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395

    Google Scholar 

  • Jung YT, Lyu MS, Buckler-White A et al (2002) Characterization of a polytropic murine leukemia virus proviral sequence associated with the virus resistance gene Rmcf of DBA/2 mice. J Virol 76:8218–8224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambris Z, Hoffmann JA, Imler JL et al (2002) Tissue and stage-specific expression of the tolls in Drosophila embryos. Gene Expr Patterns 2:311–317

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Koonin EV (2015) Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct 10:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katzourakis A, Gifford RJ (2010) Endogenous viral elements in animal genomes. PLoS Genet 6:e1001191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katzourakis A, Tristem M, Pybus OG et al (2007) Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci USA 104:6261–6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan F, Furuta Y, Kawai M, Kaminska KH, Ishikawa K, Bujnicki JM, Kobayashi I (2010) A putative mobile genetic element carrying a novel type IIF restriction-modification system (PluTI). Nucleic Acids Res 38:3019–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Yamamoto Y, Nakaoka S et al (2020) Modeling Borna disease virus in vitro spread reveals the mode of antiviral effect conferred by an endogenous Bornavirus-like element. J Virol 94:e01204–e01220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitsou K, Kotanidou A, Paraskevis D et al (2020) Upregulation of human endogenous retroviruses in bronchoalveolar lavage fluid of COVID-19 patients. medRxiv. https://doi.org/10.1101/2020.05.10.20096958

  • Kobayashi Y, Horie M, Nakano A et al (2016) Exaptation of bornavirus-like nucleoprotein elements in afrotherians. PLoS Pathog 12:e1005785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koonin EV (2016) Viruses and mobile elements as drivers of evolutionary transitions. Philos Trans R Soc Lond B Biol Sci 371:20150442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koonin EV (2018) Hunting for treasure chests in microbial defense islands. Mol Cell 70:761–762

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Dolja VV (2013) A virocentric perspective on the evolution of life. Curr Opin Virol 3:546–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Dolja VV (2014) Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 78:278–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Krupovic M (2015) Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 16:184–192

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Krupovic M (2016) Virology: a parasite’s parasite saves host’s neighbors. Nature 540:2014–2205

    Article  CAS  Google Scholar 

  • Koonin EV, Krupovic M (2018) The depths of virus exaptation. Curr Opin Virol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Makarova KS (2017) Mobile genetic elements and evolution of CRISPR-Cas systems: all the way there and back. Genome Biol Evol 9:2812–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Wolf YI, Katsnelson MI (2017) Inevitability of the emergence and persistence of genetic parasites caused by evolutionary instability of parasite-free states. Biol Direct 12:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovalskaya N, Hammond RW (2014) Molecular biology of viroid-host interactions and disease control strategies. Plant Sci 228:48–60

    Article  CAS  PubMed  Google Scholar 

  • Krupovic M, Makarova KS, Forterre P et al (2014) Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol 12:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krupovic M, Dolja VV, Koonin EV (2020) The LUCA and its complex virome. Nat Rev Microbiol 18:661–670

    Article  CAS  PubMed  Google Scholar 

  • Lange C, Hemmrich G, Klostermeier UC et al (2011) Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol 28:1687–1702

    Article  CAS  PubMed  Google Scholar 

  • Lavialle C, Cornelis G, Dupressoir A et al (2013) Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos Trans R Soc Lond B Biol Sci 368:20120507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee EJ, Banerjee S, Zhou H et al (2011) Identification of piRNAs in the central nervous system. RNA 17:1090–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leulier F, Lemaitre B (2008) Toll-like receptors—taking an evolutionary approach. Nat Rev Genet 9:165–178

    Article  CAS  PubMed  Google Scholar 

  • Mahla RS, Reddy MC, Prasad DV et al (2013) Sweeten PAMPs: role of sugar complexed PAMPs in innate immunity and vaccine biology. Front Immunol 4:248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makarova KS, Wolf YI, Snir S, Koonin EV (2011) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 193:6039–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malfavon-Borja R, Feschotte C (2015) Fighting fire with fire: endogenous retrovirus envelopes as restriction factors. J Virol 89:4047–4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath S, Fitzgerald GF, van Sinderen D (2002) Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 43:509–520

    Article  CAS  PubMed  Google Scholar 

  • McKinney HH (1929) Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J Agric Res 39:557–578

    Google Scholar 

  • Michel N, Allespach I, Venzke S et al (2005) The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to down-regulate cell-surface CCR5 and CD4. Curr Biol 15:714–723

    Article  CAS  PubMed  Google Scholar 

  • Miesen P, Joosten J, van Rij RP (2016) PIWIs Go Viral: arbovirus-derived piRNAs in vector mosquitoes. PLoS Pathog 12:e1006017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moelling K, Matskevich A, Jung JS (2006) Relationship between retroviral replication and RNA interference machineries. Cold Spring Harb Symp Quant Biol 71:365–368

    Article  CAS  PubMed  Google Scholar 

  • Monde K, Terasawa H, Nakano Y et al (2017) Molecular mechanisms by which HERV-K Gag interferes with HIV-1 Gag assembly and particle infectivity. Retrovirology 14:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mougari S, Sahmi-Bounsiar D, Levasseur A et al (2019) Virophages of giant viruses: an update at eleven. Viruses 11:733

    Article  CAS  PubMed Central  Google Scholar 

  • Mougari S, Chelkha N, Sahmi-Bounsiar D et al (2020) A virophage cross-species infection through mutant selection represses giant virus propagation, promoting host cell survival. Commun Biol 3:248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy J, Mahony J, Ainsworth S et al (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 79:7547–7555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naderer M, Brust JR, Knowle D, Blumenthal RM (2002) Mobility of a restriction-modification system revealed by its genetic contexts in three hosts. J Bacteriol 184:2411–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi S, Chandramohan D, Fioriti L et al (2016) Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc Natl Acad Sci USA 133:12697–12702

    Article  CAS  Google Scholar 

  • Nuovo GJ, Becker J, Simsir A et al (1994) HIV-1 nucleic acids localize to the spermatogonia and their progeny. A study by polymerase chain reaction in situ hybridization. Am J Pathol 144:1142–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obbard DJ, Gordon KHJ, Buck AH et al (2009) The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 364:99–115

    Article  CAS  PubMed  Google Scholar 

  • Olagoke O, Quigley BL, Eiden MV et al (2019) Antibody response against koala retrovirus (KoRV) in koalas harboring KoRV-A in the presence or absence of KoRV-B. Sci Rep 9:12416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olival KJ, Hosseini PR, Zambrana-Torrelio C et al (2017) Host and viral traits predict zoonotic spillover from mammals. Nature 546:646–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ophinni Y, Palatini U, Hayashi Y et al (2019) piRNA-guided CRISPR-like immunity in eukaryotes. Trends Immunol 40:998–1010

    Article  CAS  PubMed  Google Scholar 

  • Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA et al (2016) Uncovering Earth’s virome. Nature 536:425–430

    Article  CAS  PubMed  Google Scholar 

  • Palmarini M, Mura M, Spencer TE (2004) Endogenous betaretroviruses of sheep: teaching new lessons in retroviral interference and adaptation. J Gen Virol 85:1–13

    Article  CAS  PubMed  Google Scholar 

  • Parrish NF, Fu**o K, Shiromoto Y et al (2015) piRNAs derived from ancient viral processed pseudogenes are transgenerational sequence specific immune memory in mammals. RNA 21:1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planz O, Stitz L (1999) Borna disease virus nucleoprotein (p40) is a major target for CD8+-T-cell-mediated immune response. J Virol 73:1715–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradeu T, Carosella ED (2006) The self model and the conception of biological identity in immunology. Biol Philos 21:235–252

    Article  Google Scholar 

  • Sarker N, Fabijan J, Owen H et al (2020) Koala retrovirus viral load and disease burden in distinct northern and southern koala populations. Sci Rep 10:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler S, Ghadially H, Hofer E (2012) Evolution of the C-type lectin-like receptor genes of the DECTIN-1 cluster in the NK gene complex. ScientificWorldJournal 2012:931386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seed KD, Lazinski DW, Calderwood SB et al (2013) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587

    Article  PubMed  PubMed Central  Google Scholar 

  • Skirmuntt EC, Escalera-Zamudio M, Teeling EC et al (2020) The potential role of endogenous viral elements in the evolution of bats as reservoirs for zoonotic viruses. Annu Rev Virol 7:103–119

    Article  CAS  PubMed  Google Scholar 

  • Sofuku K, Parrish NF, Honda T et al (2015) Transcription profiling demonstrates epigenetic control of non-retroviral RNA virus-derived elements in the human genome. Cell Rep 12:1548–1554

    Article  CAS  PubMed  Google Scholar 

  • Spencer TE, Mura M, Gray CA et al (2003) Receptor usage and fetal expression of ovine endogenous betaretroviruses: implications for coevolution of endogenous and exogenous retroviruses. J Virol 77:749–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stitz L, Bilzer T, Richt JA et al (1993) Pathogenesis of Borna disease. Arch Virol Suppl 7:135–151

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S (1975) FV-4: a new gene affecting the splenomegaly induction by Friend leukemia virus. Jpn J Exp Med 45:473–478

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Kobayashi Y, Horie M et al (2014) Origin of an endogenous bornavirus-like nucleoprotein element in thirteen-lined ground squirrels. Genes Genet Syst 89:143–148

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Frangeul L, Dickson LB et al (2017) Uncovering the repertoire of endogenous flaviviral elements in Aedes mosquito genomes. J Virol 91:e00571–e00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi N, Ohashi S, Sadykov MR, Mizutani-Ui Y, Kobayashi I (2011) IS-linked movement of a restriction-modification system. PLoS One 6:e16554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Science 442:79–81

    CAS  Google Scholar 

  • Tarlinton RE, Sarker N, Fabijan J et al (2017) Differential and defective expression of Koala Retrovirus reveal complexity of host and virus evolution. bioRxiv. https://doi.org/10.1101/211466

  • Terry SN, Manganaro L, Cuesta-Dominguez A et al (2017) Expression of HERV-K108 envelope interferes with HIV-1 production. Virology 509:52–59

    Article  CAS  PubMed  Google Scholar 

  • Travis J (2009) Origins. On the origin of the immune system. Science 324:580–582

    Article  CAS  PubMed  Google Scholar 

  • Villarreal LP (2011) Viral ancestors of antiviral systems. Viruses 3:1933–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villarreal LP, Witzany G (2013) The DNA habitat and its RNA inhabitants: at the dawn of RNA sociology. Genomics Insights 6:1–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK (2010) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147

    Article  PubMed  CAS  Google Scholar 

  • Weinberger AD, Sun CL, Pluciñski MM et al (2012) Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput Biol 8:e1002475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westra ER, van Houte S, Gandon S et al (2019) The ecology and evolution of microbial CRISPR-Cas adaptive immune systems. Philos Trans R Soc Lond B Biol Sci 374:20190101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins AS (2010) The enemy within: an epigenetic role of retrotransposons in cancer initiation. Bioeassays 32:856–865

    Article  CAS  Google Scholar 

  • Wolf YI, Silas S, Wang Y et al (2020) Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat Microbiol 5:1262–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Luo Y, Lu R et al (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci USA 107:1606–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Zhou L, Liang X et al (2020) Novel cell-virus-virophage tripartite infection system discovered in the freshwater lake Dishui Lake in Shanghai, China. J Virol 94:e00149–e00120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Richards A, Khalil A et al (2020) SARS-CoV-2 RNA reverse-transcribed and integrated into the human genome. bioRxiv. https://doi.org/10.1101/2020.12.12.422516

  • Ziebell H, Carr JP (2010) Cross-protection: a century of mystery. Adv Virus Res 76:211–264

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Chang M, Nie P et al (2009) Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol 9:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I like to express my gratitude to Prof. Karin Moelling (Max Planck Institute for molecular Genetics Berlin) for ongoing support and for stimulating and fostering my interest in the topic of the viral origin of immune systems, among many others. I also like to acknowledge Dr. Günther Witzany who kindly invited me to his exciting symposia DNA Habitats and its RNA Inhabitants (2014) and Evolution—Genetic Novelty/Genomic Variations by RNA Networks and Viruses (2018) both held in Salzburg, Austria, where many of the ideas described in this chapter have been developed.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Broecker, F. (2022). The Contribution of Viruses to Immune Systems. In: Hurst, C.J. (eds) The Biological Role of a Virus. Advances in Environmental Microbiology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-85395-2_8

Download citation

Publish with us

Policies and ethics

Navigation