Flame–Acoustic Interaction: Thermoacoustic and Parametric Instabilities

  • Chapter
  • First Online:
Combustion Physics
  • 1303 Accesses

Abstract

In previous chapters, we considered flame dynamics in homogeneous unbounded fuel mixtures. A more common situation is a flame propagating in a closed combustion chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Mallard, H.L. Le Chatelier, Combustion des mélanges gazeux explosifs. Ann. Mines Paris, Series 8(4), 274–388 (1883)

    Google Scholar 

  2. M. Gonzalez, R. Borghi, A. Saouab, Interaction of a flame front with its self-generated flow in an enclosure: the ‘tulip flame’ phenomenon. Combust. Flame 88, 201–220 (1992)

    Article  Google Scholar 

  3. B. N’konga, G. Fernandez, H. Guillard, B. Larroutrou, Numerical investigations of the tulip flame instability. Comparisons with experimental results. Combust. Sci. Technol. 87, 68–89 (1993)

    Google Scholar 

  4. J.L. McGrevy, M. Matalon, Hydrodynamic instability of a premixed flame under confinement. Combust. Sci. Technol. 100, 75–94 (1994)

    Article  Google Scholar 

  5. R.W. Schcefer, F.M. Namazian, J. Kelly, M. Perrin, Effect of confinement on bluff-body burner recirculation zone characteristics and flame stability. Combust. Sci. Technol. 120, 185–211 (1996)

    Article  Google Scholar 

  6. V.V. Bychkov, M.A. Liberman, Stability of a flame in a closed chamber. Phys. Rev. Lett. 78, 1371–1734 (1997)

    Article  ADS  Google Scholar 

  7. M.A. Liberman, V.V. Bychkov, S.M. Golberg, L.E. Eriksson, Numerical study of curved flames under confinement. Combust. Sci. Technol. 130, 1–31 (1998)

    Google Scholar 

  8. G. H. Markstein, Nonsteady Flame Propagation ~Pergamon, Oxford, 1964.

    Google Scholar 

  9. G. Searby, J. Quinard, Direct and indirect measurements of Markstein numbers of premixed flames. Combust. Flame 82, 298–311 (1990)

    Article  Google Scholar 

  10. G. Searby, Acoustic instability in premixed flames. Combust. Sci. Technol. 81, 221–231 (1992)

    Article  Google Scholar 

  11. G. Searby, D. Rochwerger, A parametric acoustic instability in premixed flames. J. Fluid Mech. 231, 529–543 (1991)

    Article  ADS  MATH  Google Scholar 

  12. P. Pelce, D. Rochwerger, Vibratory instability of cellular flames propagating in tubes. J. Fluid Mech. 239, 293–307 (1992)

    Article  ADS  MATH  Google Scholar 

  13. T. Poinsot, B. Yip, D. Veynante, A. Trouve, J.M. Sarmaniego, S. Candel, Active control: an investigation method for combustion instabilities. J. Phys. (Paris) 2, 1331–1357 (1992)

    Google Scholar 

  14. P. Clavin, Premixed combustion and gasdynamics. Ann. Rev. Fluid Mech. 26, 321–352 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. O.Y. Travnikov, V.V. Bychkov, M.A. Liberman, Numerical studies of flames in wide tubes: stability limits of curved stationary flames. Phys. Rev. E 61, 468–474 (2000)

    Google Scholar 

  16. V.V. Bychkov, M.A. Liberman, Dynamics and stability of premixed flames. Phys. Reports 325, 115–237 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Clanet, G. Searby, First experimental study of the Darrieus-Landau instability. Phys. Rev. Lett. 27, 3867–3870 (1998)

    Article  ADS  Google Scholar 

  18. P. Clavin, P. Pelce, L. He, One-dimensional vibratory instability of planar flames propagating in tubes. J. Fluid Mech. 216, 299–322 (1990)

    Article  ADS  MATH  Google Scholar 

  19. V.V. Bychkov, Analytical scalings for flame interaction with sound waves. Phys. Fluids 11, 3168–3173 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. P. Pelce, P. Clavin, Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)

    Article  ADS  MATH  Google Scholar 

  21. L.D. Landau, E.M. Lifshitz, Mechanics (Pergamon, Oxford, 1960)

    MATH  Google Scholar 

  22. R.C. Aldredge, Saffman-Taylor Influence On Flame Propagation In Thermo-acoustically Excited Flow 177, 53–73 (2004)

    Google Scholar 

  23. B. Denet, A. Toma, Numerical study of premixed flames parametric acoustic instability. Combust. Sci. Tech. 109, 23–33 (1995)

    Article  Google Scholar 

  24. M. Gonzalez, Acoustic instability of a premixed flame propagating in a tube. Combust. Flame 107, 245–259 (1996)

    Article  Google Scholar 

  25. M.A. Liberman, V.V. Bychkov, S.M. Golberg, L.E. Eriksson, Numerical study of curved flames under confinement. Combust. Sci. Tech. 130, 1–31 (1998)

    Google Scholar 

  26. J.-M. Truffaut, G. Searby, Experimental study of the darrieus-landau instability on an inverted-V flame, and measurement of the markstein number. Combust. Sci. Technol. 149, 35–52 (1999)

    Article  Google Scholar 

  27. G. Searby, J.-M. Truffaut, G. Joulin, Comparison of experiments and a nonlinear model equation for spatially develo** flame instability. Phys. Fluids 13, 3270–3276 (2001)

    Article  ADS  MATH  Google Scholar 

  28. C. Clanet, G. Searby, P. Clavin, Primary acoustic instability of flames propagating in tubes: cases of spray and premixed gas combustion. J. Fluid Mech. 385, 157–197 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. J. Rayleigh, The explanation of certain acoustical phenomena. Nature 18, 319–321 (1878)

    Article  ADS  Google Scholar 

  30. T. Lieuwen, Modeling premixed combustion—acoustic wave interactions: a review. J. Propul. Power 19, 765–781 (2003)

    Article  Google Scholar 

  31. T. Poinsot, Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36, 1–28 (2017)

    Article  Google Scholar 

  32. S. Bomberg, T. Emmert, W. Polifke, Thermal versus acoustic response of velocity sensitive premixed flames. Proc. Combust. Inst. 35, 3185–3192 (2015)

    Article  Google Scholar 

  33. T. Emmert, S. Bomberg, S. Jaensch, W. Polifke, Acoustic and intrinsic thermoacoustic modes of a premixed combustor. Proc. Combust. Inst. 36, 3835–3842 (2017)

    Article  Google Scholar 

  34. S. Candel, Combustion dynamics and control: progress and challenges. Proc. Combust. Institute. 29, 1–28 (2002)

    Article  Google Scholar 

  35. G. Beardsell, G. Blanquart, Impact of pressure fluctuations on the dynamics of laminar premixed flames. Proc. Combust. Inst. 37, 1895–1902 (2019)

    Article  Google Scholar 

  36. C. Almarcha, B. Denet, J. Quinard, Premixed flames propagating freely in tubes. Combust. Flame 162, 1225–1233 (2015)

    Article  Google Scholar 

  37. J. Yanez, M. Kuznetsov, J. Grune, Flame instability of lean hydrogen-air mixtures in a smooth open-ended vertical channel. Combust. Flame 162, 2830–2839 (2015)

    Article  Google Scholar 

  38. R.C. Aldredge, N.J. Killingsworth, Experimental evaluation of Markstein-number influence on thermoacoustic instability. Combust. Flame 137, 178–197 (2004)

    Article  Google Scholar 

  39. S.H. Yoon, T.J. Noh, O. Fujita, Onset mechanism of primary acoustic instability in downward-propagating flames. Combust. Flame 170, 1–11 (2016)

    Article  Google Scholar 

  40. S.H. Yoon, L. Hu, O. Fujita, Experimental observation of pulsating instability under acoustic field in downward-propagating flames at large Lewis number. Combust. Flame 188, 1–4 (2018)

    Article  Google Scholar 

  41. C.M. Luzzato, A.S. Morgans, The effect of a laminar moving flame front on thermoacoustic oscillations of an anchored ducted V-flame. Combust. Sci. Technol. 187, 410–427 (2015)

    Article  Google Scholar 

  42. C. Almarcha, J. Quinard, B. Denet, E. Al-Sarraf, J. M. Laugier, E. Villermaux, Experimental two dimensional cellular flames. Phys. Fluids 27, 091110 (2015)

    Google Scholar 

  43. E. Al Sarraf, C. Almarcha, J. Quinard, B. Radisson, B. Denet, P. Garcia-Ybarra, Darrieus–Landau instability and Markstein numbers of premixed flames in a Hele-Shaw cell, Proc. Combust. Inst. 37, 1783–1789 (2019)

    Google Scholar 

  44. E. Al Sarraf, C. Almarcha, J. Quinard, B. Radisson, B. Denet, quantitative analysis of flame instabilities in a hele-shaw burner. Flow Turbul. Combust. 101, 851–868 (2018)

    Google Scholar 

  45. F. Veiga-López, D. Martínez-Ruiz, E. Fernández-Tarrazo, M. Sánchez-Sanz, Experimental analysis of oscillatory premixed flames in a Hele-Shaw cell propagating towards a closed end. Combust. Flame 201, 1–11 (2019)

    Article  Google Scholar 

  46. D. Fernandez-Galisteo, V.N. Kurdyumov, P.D. Ronney, Analysis of premixed flame propagation between two closely-spaced parallel plates. Combust. Flame 190, 133–145 (2018)

    Article  Google Scholar 

  47. D. Fernandez-Galisteo, V.N. Kurdyumov, Impact of the gravity field on stability of premixed flames propagating between two closely spaced parallel plates. Proc. Combust. Institute 37, 1937–1943 (2019)

    Article  Google Scholar 

  48. M.M. Alexeev, O. Yu Semenov, S.E. Yakush, Experimental study on cellular premixed propane flames in a narrow gap between parallel plates. Combust. Sci. Technol. 191, 1256–1275 (2019)

    Article  Google Scholar 

  49. B. Radisson, J. Piketty-Moine, C. Almarcha, Coupling of vibro-acoustic waves with premixed flame. Phys. Rev. Fluids 4, 121201(1–9) (2019)

    Google Scholar 

  50. D. Bradley, P.H. Gaskell, X.J. Gu, Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: a computational study. Combust. Flame 104, 176–198 (1996)

    Article  Google Scholar 

  51. A.S. Al-Shahrany, D. Bradley, M. Lawes, R. Woolley, Darrieus-Landau and thermo-acoustic instabilities in closed vessel explosions. Combust. Sci. Tech. 178, 1771–1802 (2006)

    Article  Google Scholar 

  52. D. Bradley, M. Lawes, R. Mumby, P. Ahmed, The stability of laminar explosion flames. Proc. Combust. Institute 37, 1807–1813 (2019)

    Article  Google Scholar 

  53. A.K. Dubey, Y. Koyama, N. Hashimoto, O. Fujita, Experimental and theoretical study of secondary acoustic instability of downward propagating flames: Higher modes and growth rates. Combust. Flame 205, 316–326 (2019)

    Article  Google Scholar 

  54. A.K. Dubey, Y. Koyama, S.H. Yoon, N. Hashimoto, O. Fujita, Range of “complete” instability of flat flames propagating downward in the acoustic field in combustion tube: Lewis number effect. Combust. Flame 216, 326–337 (2020)

    Article  Google Scholar 

  55. Ya. B. Zel’dovich, On the Theory of flame propagation, Zhurnal Fizicheskoi Khimii 22, 27–49 (1948) (in Russian). Translated: NACA, Technical memorandum 1282, Washington, 1951

    Google Scholar 

  56. Ya. B. Zel’dovich, Chain reactions in hot flames—an approximate theory for flame velocity. Kinetika I Katalis 2, 305–313 (1961)

    Google Scholar 

  57. A. Liñan, Tehnical Report no. 1. Afosr contract no. e00ar68-0031, INTA Madrid (1971)

    Google Scholar 

  58. T. Mantel, F.N. Egolfopoulos, C.T. Bowman, A new methodology to determine kinetic parameters for one- and two-step chemical models. Center for Turbulence Research, Proceedings of the Summer Program (1996), pp. 149–166

    Google Scholar 

  59. P. Clavin, G. Searby, Unsteady response of chain-branching premixed-flames to pressure waves. Combust. Theor. Model. 12, 545–567 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. A. Wangher, G. Searby, J. Quinard, Experimental investigation of the unsteady response of a flame front to pressure waves. Combust. Flame 154, 310–318 (2008)

    Article  Google Scholar 

  61. A.C. McIntosh, The linearized response of the mass burning rate of a premixed flame to rapid pressure change. Combust. Sci. Technol. 91, 329–346 (1993)

    Article  Google Scholar 

  62. O.J. Teerling, A.C. McIntosh, J. Brindley, Pressure wave excitation of natural flame frequencies. Combust. Theory Model 11, 147–164 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. A. Petchenko, V. Bychkov, V. Akkerman, L.E. Eriksson, Flame–sound interaction in tubes with nonslip walls. Combust. Flame 149, 418–434 (2007)

    Article  Google Scholar 

  64. H. Schmidt, C. Jiménez, Numerical study of the direct pressure effect of acoustic waves in planar premixed flames. Combust. Flame 157, 1610–1619 (2010)

    Article  Google Scholar 

  65. C. Jiménez, J. Quinard, J. Graña-Otero, H. Schmidt, G. Searby, Unsteady response of hydrogen and methane flames to pressure waves. Combust. Flame 159, 1894–1908 (2012)

    Article  Google Scholar 

  66. E. Motheau, F. Nicoud, T. Poinsot, Mixed acoustic–entropy combustion instabilities in gas turbines. J. Fluid Mech. 749, 542–576 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Liberman .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liberman, M.A. (2021). Flame–Acoustic Interaction: Thermoacoustic and Parametric Instabilities. In: Combustion Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-85139-2_6

Download citation

Publish with us

Policies and ethics

Navigation