Drug Metabolism Assessment: Liver Microsomes

  • Reference work entry
  • First Online:
The ADME Encyclopedia
  • 156 Accesses

Definition

Liver microsomes are a subcellular fraction consisting of vesicles of the endoplasmic reticulum, prepared by liver homogenization and differential centrifugation of the tissue. They are commonly used to investigate hepatic drug metabolism.

The liver is the predominant site of metabolism in the body for a large proportion of pharmaceutical drugs. The rate of metabolism influences the body’s exposure to a drug and can consequently impact the drug’s efficacy and toxicity. Hepatocytes are the major cell type, accounting for approximately 80% of the liver’s mass [1] (see entry “Drug Metabolism Assessment: Hepatocytes”). They express a broad range of enzymes capable of metabolizing xenobiotics and endogenous molecules. The endoplasmic reticulum, a continuous membrane network within the cytosol, is particularly abundant in hepatocytes [2]. A number of key metabolic enzymes are localized to this subcellular organelle, including cytochrome P450 (CYP) and uridine...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao B, Jeong W-I, Tian Z. Liver: an organ with predominant innate immunity. Hepatology. 2007;47(2):729–36. Available from: https://doi.org/10.1002/hep.22034

  2. Csala M, Bánhegyi G, Benedetti A. Endoplasmic reticulum: A metabolic compartment. FEBS Lett. 2006;580(9):2160–5. https://doi.org/10.1016/j.febslet.2006.03.050.

    Article  CAS  PubMed  Google Scholar 

  3. Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26841/

    Google Scholar 

  4. Palade GE, Siekevitz P. Liver microsomes: an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956;2(2):171–200. https://doi.org/10.1083/jcb.2.2.171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pearce RE, et al. Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity. Arch Biochem Biophys. 1996;2:145–69. https://doi.org/10.1006/abbi.1996.0294.

    Article  Google Scholar 

  6. de Duve C. Tissue fraction-past and present. J Cell Biol. 1971;50(1):20d–55d.

    Article  PubMed  Google Scholar 

  7. Nelson AC, Huang W, Moody DE. Variables in human liver microsome preparation: impact on the kinetics of L-α-Acetylmethadol (LAAM)N-demethylation and dextromethorphan O-demethylation. Drug Metab Dispos. 2001;29(3):319–25.

    CAS  PubMed  Google Scholar 

  8. Lowry OH, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    Article  CAS  PubMed  Google Scholar 

  9. Guengerich FP, Martin MV, Sohl CD, Cheng Q. Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat Protoc. 2009;4(9):1245–51. https://doi.org/10.1038/nprot.2009.121.

    Article  CAS  PubMed  Google Scholar 

  10. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. J Biol Chem. 1954;239(7):2379–85.

    Article  Google Scholar 

  11. Gan L, von Moltke LL, Trepanier LA, Harmatz JS, Greenblatt DJ, Court MH. Role of NADPH-cytochrome P450 reductase and cytochrome-b5/NADH-b5 reductase in variability of CYP3A activity in human liver microsomes. Drug Metab Dispos. 2009;37(1):90–6. https://doi.org/10.1124/dmd.108.023424.

    Article  CAS  PubMed  Google Scholar 

  12. Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209. https://doi.org/10.1016/j.taap.2004.01.010.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Gao N, Tian X, Liu T, Fang Y, Zhou J, et al. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo. Sci Rep. 2015;5:17671. https://doi.org/10.1038/srep17671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams JA, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCI/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8. https://doi.org/10.1124/dmd.104.000794.

    Article  CAS  PubMed  Google Scholar 

  15. Houston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol. 1994;47(9):1469–79. https://doi.org/10.1016/0006-2952(94)90520-7.

    Article  CAS  PubMed  Google Scholar 

  16. McGinnity DF, Riley RJ. Predicting drug pharmacokinetics in humans from in vitro metabolism studies. Biochem Soc Trans. 2001;29(2):135–9. https://doi.org/10.1042/bst0290135.

    Article  CAS  PubMed  Google Scholar 

  17. Lee J-Y, Lee SY, Lee K, Oh SJ, Kim SK. Determination of species-difference in microsomal metabolism of amitriptyline using a predictive MRM–IDA–EPI method. Chem Biol Interact. 2015;229:109–18. https://doi.org/10.1016/j.cbi.2015.01.024.

    Article  CAS  PubMed  Google Scholar 

  18. Di L. Reaction phenoty** to assess victim drug-drug interaction risks. Expert Opin Drug Discov. 2017;12(11):1105–15. https://doi.org/10.1080/17460441.2017.1367280.

    Article  CAS  PubMed  Google Scholar 

  19. Lapham K, Callegari E, Cianfrogna J, Lin J, Niosi M, Orozco CC, et al. In vitro characterization of Ertugliflozin metabolism by UDP-glucuronosyltransferase and cytochrome P450 enzymes. Drug Metab Dispos. 2020;48(12):1350–63. https://doi.org/10.1124/dmd.120.000171.

    Article  CAS  PubMed  Google Scholar 

  20. Chapron BD, Dinh JC, Toren PC, Gaedigk A, Leeder JS. The respective roles of CYP3A4 and CYP2D6 in the metabolism of Pimozide to established and novel metabolites. Drug Metab Dispos. 2020;48(11):1113–20. https://doi.org/10.1124/dmd.120.000188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fowler S, Zhang H. In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status on methodologies and their utility for predicting drug–drug interactions. AAPS J. 2008;10(2):410–24. https://doi.org/10.1208/s12248-008-9042-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kosaka M, Zhang D, Wong S, Yan Z. NADPH-independent inactivation of CYP2B6 and NADPH-dependent inactivation of CYP3A4/5 by PBD: potential implication for assessing covalent modulators for time-dependent inhibition. Drug Metab Dispos. 2020;48(8):655–61. https://doi.org/10.1124/dmd.120.090878.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wilcock .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wilcock, J., Ward, L. (2022). Drug Metabolism Assessment: Liver Microsomes. In: Talevi, A. (eds) The ADME Encyclopedia. Springer, Cham. https://doi.org/10.1007/978-3-030-84860-6_144

Download citation

Publish with us

Policies and ethics

Navigation