In Vitro ADME Assays and In Vivo Extrapolations

  • Reference work entry
  • First Online:
The ADME Encyclopedia
  • 101 Accesses

Definition

A key goal of drug discovery is to optimize a new investigational drug’s physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties through smart chemical design in order to achieve adequate exposure of the drug at the target site of action. This is a considerable balancing act, ensuring that the drug can be administered (preferably orally) at a reasonable dose and has good PK characteristics so that the drug exposure is at an appropriate therapeutic level and without efficacy or safety issues.

In vitro ADME assays provide crucial data about a drug’s properties early in the drug discovery process. These data may inform structural modifications and may offer opportunities to rank order and triage a chemical series to ensure development of an efficacious and safe drug. Understanding how the in vitro data may extrapolate to in vivo is an essential part of this process and allows for informed drug optimization and progression through the drug...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5. https://doi.org/10.1038/nrd1470.

    Article  CAS  PubMed  Google Scholar 

  2. Benet LZ, Zia-Amirhosseini P. Basic principles of pharmacokinetics. Toxicol Pathol. 1995;23(2):115–23. https://doi.org/10.1177/019262339502300203. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20. https://doi.org/10.1023/a:1016212804288.

    Article  CAS  PubMed  Google Scholar 

  3. Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, et al. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos. 2013;41(12):1975–93. https://doi.org/10.1124/dmd.113.054031.

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Skolnik S. Mitigating permeability-mediated risks in drug discovery. Expert Opin Drug Metab Toxicol. 2010;6(2):171–87. https://doi.org/10.1517/17425250903436486.

    Article  CAS  PubMed  Google Scholar 

  5. Nair AK, Anand O, Chun N, Conner DP, Mehta MU, Nhu DT, et al. Statistics on BCS classification of generic drug products approved between 2000 and 2011 in the USA. AAPS J. 2012;14(4):664–6. https://doi.org/10.1208/s12248-012-9384-z.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption process. J Med Chem. 1998;41(7):1007–10. https://doi.org/10.1021/jm970530e.

    Article  CAS  PubMed  Google Scholar 

  7. Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000;44(1):301–12. https://doi.org/10.1016/s1056-8719(00)00113-1.

    Article  CAS  PubMed  Google Scholar 

  8. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175(3):880–5. https://doi.org/10.1016/0006-291x(91)91647-u.

    Article  CAS  PubMed  Google Scholar 

  9. Kilford PJ, Gertz M, Houston JB, Galetin A. Hepatocellular binding of drugs: correction for unbound fraction in hepatocyte incubations using microsomal binding or drug lipophilicity data. Drug Metab Dispos. 2008;36(7):1194–7. https://doi.org/10.1124/dmd.108.020834.

    Article  CAS  PubMed  Google Scholar 

  10. Austin RP, Barton P, Cockroft SL, Wenlock MC, Riley RJ. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos. 2002;30(12):1497–503. https://doi.org/10.1124/dmd.30.12.1497.

    Article  CAS  PubMed  Google Scholar 

  11. Austin RP, Barton P, Mohmed S, Riley RJ. The binding of drugs to hepatocytes and its relationship to physicochemical properties. Drug Metab Dispos. 2005;33(3):419–25. https://doi.org/10.1124/dmd.104.002436.

    Article  CAS  PubMed  Google Scholar 

  12. Hallifax D, Houston JB. Uptake and intracellular binding of lipophilic amine drugs by isolated rat hepatocytes and implications for prediction of in vivo metabolic clearance. Drug Metab Dispos. 2006;34(11):1829–36. https://doi.org/10.1124/dmd.106.010413.

    Article  CAS  PubMed  Google Scholar 

  13. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.

    CAS  PubMed  Google Scholar 

  14. Riley RJ, McGinnity DF, Austin RP. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos. 2005;33(9):1304–11. https://doi.org/10.1124/dmd.105.004259.

    Article  CAS  PubMed  Google Scholar 

  15. Ito K, Houston JB. Prediction of drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pham Res. 2005;22(1):103–12. https://doi.org/10.1007/s11095-004-9015-1.

    Article  CAS  Google Scholar 

  16. Brown HS, Griffin M, Houston JB. Evaluation of cryopreserved human hepatocytes as an alternative in vitro system to microsomes for the prediction of metabolic clearance. Drug Metab Dispos. 2007;35(2):293–301. https://doi.org/10.1124/dmd.106.011569.

    Article  CAS  PubMed  Google Scholar 

  17. Wood FL, Houston JB, Hallifax D. Clearance prediction methodology needs fundamental improvement: trends common to rat and human hepatocytes/microsomes and implications for experimental methodology. Drug Metab Dispos. 2017;45(11):1178–88. https://doi.org/10.1124/dmd.117.077040.

    Article  CAS  PubMed  Google Scholar 

  18. Bowman CM, Benet LZ. In vitro-in vivo extrapolation and hepatic clearance-dependent underprediction. J Pharm Sci. 2019;108(7):2500–4. https://doi.org/10.1016/j.xphs.2019.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamagata T, Zanelli U, Gallemann D, Perrin D, Dolgos H, Petersson C. Comparison of methods for the prediction of human clearance from hepatocyte intrinsic clearance for a set of reference compounds and an external evaluation set. Xenobiotica. 2017;47(9):741–51. https://doi.org/10.1080/00498254.2016.1222639.

    Article  CAS  PubMed  Google Scholar 

  20. Sohlenius-Sternbeck AK, Jones C, Ferguson D, Middleton BJ, Projean D, Floby E, et al. Practical use of the regression offset approach for the prediction of in vivo intrinsic clearance from hepatocytes. Xenobiotica. 2012;42(9):841–53. https://doi.org/10.3109/00498254.2012.669080.

    Article  CAS  PubMed  Google Scholar 

  21. Chan TS, Hongbin Y, Moore A, Khetani SR, Tweedie D. Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model. HepatoPac Drug Metab Dispos. 2013;41(12):2024–32. https://doi.org/10.1124/dmd.113.053397.

    Article  PubMed  Google Scholar 

  22. Hutzler JM, Ring BJ, Anderson SR. Low-turnover drug molecules: a current challenge for drug metabolism scientists. Drug Metab Dispos. 2015;43(12):1917–28. https://doi.org/10.1124/dmd.115.066431.

    Article  CAS  PubMed  Google Scholar 

  23. Bonn B, Svanberg P, Janefeldt A, Hultman I, Grime K. Determination of human hepatocyte intrinsic clearance for slowly metabolized compounds: comparison of a primary hepatocytes/stromal cell co-culture with plated primary hepatocytes and HepaRG. Drug Metab Dispos. 2016;44(4):527–33. https://doi.org/10.1124/dmd.115.067769.

    Article  CAS  PubMed  Google Scholar 

  24. Lancett P, Williamson B, Barton P, Riley RJ. Development and characterization of a human hepatocyte low intrinsic clearance assay for use in drug discovery. Drug Metab Dispos. 2018;46(8):1169–78. https://doi.org/10.1124/dmd.118.081596.

    Article  CAS  PubMed  Google Scholar 

  25. Harrison J, De Bruyn T, Darwich AS, Houston JB. Simultaneous assessment in vitro of transporter and metabolic processes in hepatic drug clearance: use of a media loss approach. Drug Metab Dispos. 2018;46(4):405–14. https://doi.org/10.1124/dmd.117.079590.

    Article  CAS  PubMed  Google Scholar 

  26. Di L. Reaction phenoty** to assess victim drug-drug interaction risks. Expert Opin Drug Discov. 2017;12(11):1105–15. https://doi.org/10.1080/17460441.2017.1367280.

    Article  CAS  PubMed  Google Scholar 

  27. Zientek MA, Youdim K. Reaction phenoty**: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos. 2015;43(1):163–81. https://doi.org/10.1124/dmd.114.058750.

    Article  CAS  PubMed  Google Scholar 

  28. Bohnert T, Patel A, Templeton I, Chen Y, Lu C, Lai G, International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) Victim Drug-Drug Interactions Working Group, et al. Evaluation of a new molecular entity as a victim of metabolic drug-drug interactions – an industry perspective. Drug Metab Dispos. 2016;44(8):1399–423. https://doi.org/10.1124/dmd.115.069096.

    Article  CAS  PubMed  Google Scholar 

  29. Crespi CL. Xenobiotic-metabolizing human cells as tools for pharmacological and toxicological research. Adv Drug Res. 1995;26:179–235. https://doi.org/10.1016/S0065-2490(05)80006-1.

    Article  CAS  Google Scholar 

  30. Chen Y, Liu L, Nguyen K, Fretland AJ. Utility of intersystem extrapolation factors in early reaction phenoty** and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450. Drug Metab Dispos. 2011;39(3):373–82. https://doi.org/10.1124/dmd.110.035147.

    Article  CAS  PubMed  Google Scholar 

  31. Soars MG, Gelboin HV, Krausz KW, Riley RJ. A comparison of relative abundance, activity factor and inhibitory monoclonal antibody approaches in the characterization of human CYP enzymology. Br J Clin Pharmacol. 2003;55(2):175–81. https://doi.org/10.1046/j.1365-2125.2003.01721.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Emoto C, Murayama N, Rostami-Hodjegan A, Yamazaki H. Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution. Curr Drug Metab. 2010;11(8):678–85. https://doi.org/10.2174/138920010794233503.

    Article  CAS  PubMed  Google Scholar 

  33. Youdim KA, Zayed A, Dickins M, Phipps A, Griffiths M, Darekar A, et al. Application of CYP3A4 in vitro data to predict clinical drug-drug interactions; predictions of compounds as objects of interaction. Br J Clin Pharmacol. 2008;65(5):680–92. https://doi.org/10.1111/j.1365-2125.2007.03070.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hewitt NJ, Lecluyse EL, Ferguson SS. Induction of hepatic cytochrome P450 enzymes: methods, mechanisms, recommendations, and in vitro-in vivo correlations. Xenobiotica. 2007;37(10–11):1196–224. https://doi.org/10.1080/00498250701534893.

    Article  CAS  PubMed  Google Scholar 

  35. Fahmi OA, Kish M, Boldt S, Obach RS. Cytochrome P450 3A4 mRNA is a more reliable marker than CYP3A4 activity for detecting pregnane X receptor-activated induction of drug-metabolizing enzymes. Drug Metab Dispos. 2010;38(9):1605–11. https://doi.org/10.1124/dmd.110.033126.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang JG, Ho T, Callendrello AL, Clark RJ, Santone EA, Kinsman S, et al. Evaluation of calibration curve-based approaches to predict clinical inducers and noninducers of CYP3A4 with plated human hepatocytes. Drug Metab Dispos. 2014;42(9):1379–91. https://doi.org/10.1124/dmd.114.058602.

    Article  CAS  PubMed  Google Scholar 

  37. Ripp SL, Mills JB, Fahmi OA, Trevena KA, Liras JL, Maurer TS, et al. Use of immortalized human hepatocytes to predict the magnitude of clinical drug-drug interactions caused by CYP3A4 induction. Drug Metab Dispos. 2006;34(10):1742–8. https://doi.org/10.1124/dmd.106.010132.

    Article  CAS  PubMed  Google Scholar 

  38. Fahmi OA, Boldt S, Kish M, Obach RS, Tremaine LM. Prediction of drug-drug interactions from in vitro induction data: application of the relative induction score approach using cryopreserved human hepatocytes. Drug Metab Dispos. 2008;36(9):1971–4. https://doi.org/10.1124/dmd.108.021907.

    Article  CAS  PubMed  Google Scholar 

  39. Fahmi OA, Shebley M, Palamanda J, Sinz MW, Ramsden D, Einolf HJ, et al. Evaluation of CYP2B6 induction and prediction of clinical drug-drug interactions: considerations from the IQ consortium induction working group- an industry perspective. Drug Metab Dispos. 2016;44(10):1720–30. https://doi.org/10.1124/dmd.116.071076.

    Article  CAS  PubMed  Google Scholar 

  40. Grime K, Ferguson DD, Riley RJ. The use of HepaRG and human hepatocyte data in predicting CYP induction drug-drug interactions via static equation and dynamic modelling approaches. Curr Drug Metab. 2010;11(10):870–85. https://doi.org/10.2174/138920010794479637.

    Article  CAS  PubMed  Google Scholar 

  41. Fahmi OA, Raucy JL, Ponce E, Hassanali S, Lasker JM. Utility of DPX2 cells for predicting CYP3A induction-mediated drug-drug interactions and associated structure-activity relationships. Drug Metab Dispos. 2012;40(11):2204–11. https://doi.org/10.1124/dmd.112.047456.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Butler .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Butler, P., Riley, R.J. (2022). In Vitro ADME Assays and In Vivo Extrapolations. In: Talevi, A. (eds) The ADME Encyclopedia. Springer, Cham. https://doi.org/10.1007/978-3-030-84860-6_141

Download citation

Publish with us

Policies and ethics

Navigation