Sha** for Cleaning: Reconsidering Root Canal Debridement

  • Chapter
  • First Online:
Sha** for Cleaning the Root Canals

Abstract

Overly quick mechanical sha** is a clinical reality. The main reason for that is the available engine-driven technology which considerably shortened the conventional time span necessary to shape the canal space, interfering, and thus impacting on the traditional Cleaning & Sha** concept proposed by Schilder as a simultaneous transoperative procedure. Hence, the present chapter aims to cover the debate on how current mechanical canal sha** tools and methods affect this traditional concept, and how canal irrigation should be performed, as an alternative to overcome the drawbacks of the overly fast mechanical preparation. In this context, it would be important to first understand how effective mechanical preparation really is.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sjögren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990;16:498–504.

    Article  PubMed  Google Scholar 

  2. Siqueira JF Jr. Taxonomic changes of bacteria associated with endodontic infections. J Endod. 2003;29:619–23.

    Article  PubMed  Google Scholar 

  3. Siqueira JF Jr, Rôças IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod. 2008;34:1291–301.e3.

    Article  PubMed  Google Scholar 

  4. Waltimo T, Trope M, Haapasalo M, Orstavik D. Clinical efficacy of treatment procedures in endodontic infection control and one year follow-up of periapical healing. J Endod. 2005;31:863–6.

    Article  PubMed  Google Scholar 

  5. Hatton EH, Skillen WG, Moen OH. Histologic findings in teeth with treated and filled root canals. J Am Dent Assoc. 1928;15:56.

    Google Scholar 

  6. Walton RE. Histologic evaluation of different methods of enlarging the pulp canal space. J Endod. 1976;2:304–11.

    Article  PubMed  Google Scholar 

  7. De-Deus G, Belladonna FG, Silva EJ, Marins JR, Souza EM, Perez R, et al. Micro-CT evaluation of non-instrumented canal areas with different enlargements performed by NiTi systems. Braz Dent J. 2015;26:624–9.

    Article  PubMed  Google Scholar 

  8. Peters OA, Boessler C, Paqué F. Root canal preparation with a novel nickel-titanium instrument evaluated with micro-computed tomography: canal surface preparation over time. J Endod. 2010;36:1068–72.

    Article  PubMed  Google Scholar 

  9. Versiani MA, Steier L, De-Deus G, Tassani S, Pécora JD, Sousa-Neto MD. Micro–computed tomography study of oval-shaped canals prepared with the Self-adjusting File, Reciproc, WaveOne, and Protaper Universal systems. J Endod. 2013;39:1060–6.

    Article  PubMed  Google Scholar 

  10. Peters OA, Schönenberger K, Laib A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J. 2001;34:221–30.

    Article  PubMed  Google Scholar 

  11. De-Deus G, Belladonna FG, Cavalcante DM, Simoes-Carvalho M, Silva E, Carvalhal JCA, et al. Contrast-enhanced micro-CT to assess dental pulp tissue debridement in root canals of extracted teeth: a series of cascading experiments towards method validation. Int Endod J. 2020;54:279–93.

    Article  PubMed  Google Scholar 

  12. Senia ES. Canal diameter: the forgotten dimension. Dent Today. 2001;20:58–62.

    PubMed  Google Scholar 

  13. Jou YT, Karabucak B, Levin J, Liu D. Endodontic working width: current concepts and techniques. Dent Clin N Am. 2004;48:323–35.

    Article  PubMed  Google Scholar 

  14. De-Deus G, Barino B, Zamolyi RQ, Souza E, Fonseca A Jr, Fidel S, et al. Suboptimal debridement quality produced by the single-file F2 ProTaper technique in oval-shaped canals. J Endod. 2010;36:1897–900.

    Article  PubMed  Google Scholar 

  15. De-Deus G, Souza EM, Barino B, Maia J, Zamolyi RQ, Reis C, et al. The self-adjusting file optimizes debridement quality in oval-shaped root canals. J Endod. 2011;37:701–5.

    Article  PubMed  Google Scholar 

  16. Varela P, Souza E, de Deus G, Duran-Sindreu F, Mercade M. Effectiveness of complementary irrigation routines in debriding pulp tissue from root canals instrumented with a single reciprocating file. Int Endod J. 2019;52:475–83.

    Article  PubMed  Google Scholar 

  17. Ricucci D, Loghin S, Goncalves LS, Rocas IN, Siqueira JF Jr. Histobacteriologic conditions of the apical root canal system and periapical tissues in teeth associated with sinus tracts. J Endod. 2018;44:405–13.

    Article  PubMed  Google Scholar 

  18. Ricucci D, Loghin S, Siqueira JF Jr. Exuberant biofilm infection in a lateral canal as the cause of short-term endodontic treatment failure: report of a case. J Endod. 2013;39:712–8.

    Article  PubMed  Google Scholar 

  19. Kishen A. Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endod Topics. 2006;13:57–83.

    Article  Google Scholar 

  20. Estrela C, Decurcio DA, Rossi-Fedele G, Silva JA, Guedes OA, Borges AH. Root perforations: a review of diagnosis, prognosis and materials. Braz Oral Res. 2018;32:e73.

    Article  PubMed  Google Scholar 

  21. De-Deus G, Belladonna FG, Simoes-Carvalho M, Cavalcante DM, Ramalho C, Souza EM, et al. Sha** efficiency as a function of time of a new heat-treated instrument. Int Endod J. 2019;52:337–42.

    Article  PubMed  Google Scholar 

  22. Paqué F, Balmer M, Attin T, Peters OA. Preparation of oval-shaped root canals in mandibular molars using nickel-titanium rotary instruments: a micro-computed tomography study. J Endod. 2010;36:703–7.

    Article  PubMed  Google Scholar 

  23. Paqué F, Peters OA. Micro-computed tomography evaluation of the preparation of long oval root canals in mandibular molars with the self-adjusting file. J Endod. 2011;37:517–21.

    Article  PubMed  Google Scholar 

  24. Mickel AK, Chogle S, Liddle J, Jones JJ. The role of apical size determination and enlargement in the reduction of intracanal bacteria. J Endod. 2007;33:21–3.

    Article  PubMed  Google Scholar 

  25. Lacerda MFLS, Marceliano-Alves MF, Perez AR, Provenzano JC, Neves MAS, Pires FR, et al. Cleaning and sha** oval canals with 3 instrumentation systems: a correlative micro-computed tomographic and histologic study. J Endod. 2017;43:1878–84.

    Article  PubMed  Google Scholar 

  26. Lima CO, Barbosa AFA, Ferreira CM, Augusto CM, Sassone LM, Lopes RT, et al. The impact of minimally invasive root canal preparation strategies on the sha** ability of mandibular molars. Int Endod J. 2020;53:1680–8.

    Article  PubMed  Google Scholar 

  27. Rover G, Belladonna FG, Bortoluzzi EA, De-Deus G, Silva E, Teixeira CS. Influence of access cavity design on root canal detection, instrumentation efficacy, and fracture resistance assessed in maxillary molars. J Endod. 2017;43:1657–62.

    Article  PubMed  Google Scholar 

  28. Burleson A, Nusstein J, Reader A, Beck M. The in vivo evaluation of hand/rotary/ultrasound instrumentation in necrotic, human mandibular molars. J Endod. 2007;33:782–7.

    Article  PubMed  Google Scholar 

  29. Vansan LP, Pecora JD, Costa WF, Maia Campos G. Effects of various irrigating solutions on the cleaning of the root canal with ultrasonic instrumentation. Braz Dent J. 1990;1:37–44.

    PubMed  Google Scholar 

  30. Paqué F, Laib A, Gautschi H, Zehnder M. Hard-tissue debris accumulation analysis by high-resolution computed tomography scans. J Endod. 2009;35:1044–7.

    Article  PubMed  Google Scholar 

  31. Robinson JP, Lumley PJ, Claridge E, Cooper PR, Grover LM, Williams RL, et al. An analytical micro-CT methodology for quantifying inorganic dentine debris following internal tooth preparation. J Dent. 2012;40:999–1005.

    Article  PubMed  Google Scholar 

  32. De-Deus G, Roter J, Reis C, Fidel S, Versiani MA, Alves H, et al. Assessing accumulated hard-tissue debris using micro-computed tomography and free software for image processing and analysis. J Endod. 2014;40:271–6.

    Article  PubMed  Google Scholar 

  33. Haapasalo M, Shen Y, Wang Z, Gao Y. Irrigation in endodontics. Br Dent J. 2014;216:299–303.

    Article  PubMed  Google Scholar 

  34. Nair PN, Henry S, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:231–52.

    Article  PubMed  Google Scholar 

  35. Portenier I, Haapasalo H, Rye A, Waltimo T, Orstavik D, Haapasalo M. Inactivation of root canal medicaments by dentine, hydroxylapatite and bovine serum albumin. Int Endod J. 2001;34:184–8.

    Article  PubMed  Google Scholar 

  36. Paqué F, Boessler C, Zehnder M. Accumulated hard tissue debris levels in mesial roots of mandibular molars after sequential irrigation steps. Int Endod J. 2011;44:148–53.

    Article  PubMed  Google Scholar 

  37. Paqué F, Rechenberg DK, Zehnder M. Reduction of hard-tissue debris accumulation during rotary root canal instrumentation by etidronic acid in a sodium hypochlorite irrigant. J Endod. 2012;38:692–5.

    Article  PubMed  Google Scholar 

  38. Paqué F, Al-Jadaa A, Kfir A. Hard-tissue debris accumulation created by conventional rotary versus self-adjusting file instrumentation in mesial root canal systems of mandibular molars. Int Endod J. 2012;45:413–8.

    Article  PubMed  Google Scholar 

  39. Siqueira JF Jr, Perez AR, Marceliano-Alves MF, Provenzano JC, Silva SG, Pires FR, et al. What happens to unprepared root canal walls: a correlative analysis using micro-computed tomography and histology/scanning electron microscopy. Int Endod J. 2018;51:501–8.

    Article  PubMed  Google Scholar 

  40. Zehnder M. Root canal irrigants. J Endod. 2006;32:389–98.

    Article  PubMed  Google Scholar 

  41. Berutti E, Castellucci A. Cleaning and sha** the root canal system. In: Castellucci A, editor. Endodontics. Florence: Il Tridente; 2004. p. 396–437.

    Google Scholar 

  42. Peters OA, Peters C. Cleaning and sha** of the root canal system. In: Hargreaves KM, Cohen S, editors. Cohen’s pathways of the pulp. St. Louis: Mosby; 2011. p. 283–348.

    Chapter  Google Scholar 

  43. Haapasalo M. Current advances in irrigation. Endod Topics. 2013;27:1–2.

    Article  Google Scholar 

  44. Papa J, Cain C, Messer HH. Moisture content of vital vs endodontically treated teeth. Endod Dent Traumatol. 1994;10:91–3.

    Article  PubMed  Google Scholar 

  45. Proell F. Über die Eigenschaften des Calxyls und seine Vorzüge vor anderen in der zahnärtzlichen Praxis angewandten Medikamenten. Zahnärztl Rdsch. 1949;14:255–9.

    Google Scholar 

  46. Behnen MJ, West LA, Liewehr FR, Buxton TB, McPherson JC 3rd. Antimicrobial activity of several calcium hydroxide preparations in root canal dentin. J Endod. 2001;27:765–7.

    Article  PubMed  Google Scholar 

  47. Sjögren U, Figdor D, Spängberg L, Sundqvist G. The antimicrobial effect of calcium hydroxide as a short-term intracanal dressing. Int Endod J. 1991;24:119–25.

    Article  PubMed  Google Scholar 

  48. Hasselgren G, Olsson B, Cvek M. Effects of calcium hydroxide and sodium hypochlorite on the dissolution of necrotic porcine muscle tissue. J Endod. 1988;14:125–7.

    Article  PubMed  Google Scholar 

  49. Zehnder M, Grawehr M, Hasselgren G, Waltimo T. Tissue-dissolution capacity and dentin-disinfecting potential of calcium hydroxide mixed with irrigating solutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96:608–13.

    Article  PubMed  Google Scholar 

  50. Kvist T, Molander A, Dahlen G, Reit C. Microbiological evaluation of one- and two-visit endodontic treatment of teeth with apical periodontitis: a randomized, clinical trial. J Endod. 2004;30:572–6.

    Article  PubMed  Google Scholar 

  51. Salas H, Vieira GCS, Palomino I, Valero J, Pacheco-Yanes J, Campello AF, et al. Outcome of endodontic treatment with chlorhexidine gluconate as main irrigant: a case series. Aust Endod J. 2020;46:307–14.

    Article  PubMed  Google Scholar 

  52. Naenni N, Thoma K, Zehnder M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod. 2004;30:785–7.

    Article  PubMed  Google Scholar 

  53. Zehnder M, Kosicki D, Luder H, Sener B, Waltimo T. Tissue-dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:756–62.

    Article  PubMed  Google Scholar 

  54. Grigoratos D, Knowles J, Ng YL, Gulabivala K. Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int Endod J. 2001;34:113–9.

    Article  PubMed  Google Scholar 

  55. Marending M, Stark WJ, Brunner TJ, Fischer J, Zehnder M. Comparative assessment of time-related bioactive glass and calcium hydroxide effects on mechanical properties of human root dentin. Dent Traumatol. 2009;25:126–9.

    Article  PubMed  Google Scholar 

  56. Sim TP, Knowles JC, Ng YL, Shelton J, Gulabivala K. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int Endod J. 2001;34:120–32.

    Article  PubMed  Google Scholar 

  57. Ulin C, Magunacelaya-Barria M, Dahlen G, Kvist T. Immediate clinical and microbiological evaluation of the effectiveness of 0.5% versus 3% sodium hypochlorite in root canal treatment: a quasi-randomized controlled trial. Int Endod J. 2020;53:591–603.

    Article  PubMed  Google Scholar 

  58. Verma N, Sangwan P, Tewari S, Duhan J. Effect of different concentrations of sodium hypochlorite on outcome of primary root canal treatment: a randomized controlled trial. J Endod. 2019;45:357–63.

    Article  PubMed  Google Scholar 

  59. Marending M, Luder HU, Brunner TJ, Knecht S, Stark WJ, Zehnder M. Effect of sodium hypochlorite on human root dentine--mechanical, chemical and structural evaluation. Int Endod J. 2007;40:786–93.

    Article  PubMed  Google Scholar 

  60. Axelsson P, Nystrom B, Lindhe J. The long-term effect of a plaque control program on tooth mortality, caries and periodontal disease in adults. Results after 30 years of maintenance. J Clin Periodontol. 2004;31:749–57.

    Article  PubMed  Google Scholar 

  61. Shen Y, Gao Y, Qian W, Ruse ND, Zhou X, Wu H, et al. Three-dimensional numeric simulation of root canal irrigant flow with different irrigation needles. J Endod. 2010;36:884–9.

    Article  PubMed  Google Scholar 

  62. Thomas AR, Velmurugan N, Smita S, Jothilatha S. Comparative evaluation of canal isthmus debridement efficacy of modified EndoVac technique with different irrigation systems. J Endod. 2014;40:1676–80.

    Article  PubMed  Google Scholar 

  63. van der Sluis LWM, Verhaagen B, Macedo R, Versluis M. The role of irrigation in endodontics. In: Olivi G, De Moor R, DiVito E, editors. Lasers in endodontics: scientific background and clinical applications. 1st ed. Cham: Springer; 2016. p. 298.

    Google Scholar 

  64. Boutsioukis C, Van der Sluis L. Syringe irrigation: blending endodontics and fluid dynamics. In: Bettina B, editor. Endodontic irrigation: chemical disinfection of the root canal system. Cham: Springer; 2015. p. 45–64.

    Chapter  Google Scholar 

  65. Grossman LI. Irrigation of root canals. J Am Dent Assoc. 1943;30:1915–7.

    Article  Google Scholar 

  66. Psimma Z, Boutsioukis C, Kastrinakis E, Vasiliadis L. Effect of needle insertion depth and root canal curvature on irrigant extrusion ex vivo. J Endod. 2013;39:521–4.

    Article  PubMed  Google Scholar 

  67. Psimma Z, Boutsioukis C, Vasiliadis L, Kastrinakis E. A new method for real-time quantification of irrigant extrusion during root canal irrigation ex vivo. Int Endod J. 2013;46:619–31.

    Article  PubMed  Google Scholar 

  68. Ram Z. Effectiveness of root canal irrigation. Oral Surg Oral Med Oral Pathol. 1977;44:306–12.

    Article  PubMed  Google Scholar 

  69. Kahn FH, Rosenberg PA, Gliksberg J. An in vitro evaluation of the irrigating characteristics of ultrasonic and subsonic handpieces and irrigating needles and probes. J Endod. 1995;21:277–80.

    Article  PubMed  Google Scholar 

  70. Saini M, Kumari M, Taneja S. Comparative evaluation of the efficacy of three different irrigation devices in removal of debris from root canal at two different levels: an in vitro study. J Conserv Dent. 2013;16:509–13.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Perez R, Neves AA, Belladonna FG, Silva EJ, Souza EM, Fidel S, et al. Impact of the needle insertion depth on the removal of hard-tissue debris. Int Endod J. 2016;50:560–8.

    Article  PubMed  Google Scholar 

  72. Boutsioukis C, Kastrinakis E, Lambrianidis T, Verhaagen B, Versluis M, van der Sluis LW. Formation and removal of apical vapor lock during syringe irrigation: a combined experimental and computational fluid dynamics approach. Int Endod J. 2014;47:191–201.

    Article  PubMed  Google Scholar 

  73. Boutsioukis C, Lambrianidis T, Kastrinakis E, Bekiaroglou P. Measurement of pressure and flow rates during irrigation of a root canal ex vivo with three endodontic needles. Int Endod J. 2007;40:504–13.

    Article  PubMed  Google Scholar 

  74. Šnjarić D, Čarija Z, Braut A, Halaji A, Kovačević M, Kuiš D. Irrigation of human prepared root canal—ex vivo based computational fluid dynamics analysis. Croat Med J. 2012;23:470–9.

    Article  Google Scholar 

  75. Fernandez Rivas D, Verhaagen B, Seddon JR, Zijlstra AG, Jiang LM, van der Sluis LW, et al. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles. Biomicrofluidics. 2012;6:34114.

    Article  PubMed  Google Scholar 

  76. van der Sluis LW, Versluis M, Wu MK, Wesselink PR. Passive ultrasonic irrigation of the root canal: a review of the literature. Int Endod J. 2007;40:415–26.

    Article  PubMed  Google Scholar 

  77. Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Annu Rev Fluid Mech. 2000;32:93–136.

    Article  Google Scholar 

  78. Tay FR, Gu LS, Schoeffel GJ, Wimmer C, Susin L, Zhang K, et al. Effect of vapor lock on root canal debridement by using a side-vented needle for positive-pressure irrigant delivery. J Endod. 2010;36:745–50.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Agarwal A, Deore RB, Rudagi K, Nanda Z, Baig MO, Fareez MA. Evaluation of apical vapor lock formation and comparative evaluation of its elimination using three different techniques: an in vitro study. J Contemp Dent Pract. 2017;18:790–4.

    Article  PubMed  Google Scholar 

  80. Vera J, Arias A, Romero M. Effect of maintaining apical patency on irrigant penetration into the apical third of root canals when using passive ultrasonic irrigation: an in vivo study. J Endod. 2011;37:1276–8.

    Article  PubMed  Google Scholar 

  81. Vera J, Arias A, Romero M. Dynamic movement of intracanal gas bubbles during cleaning and sha** procedures: the effect of maintaining apical patency on their presence in the middle and cervical thirds of human root canals-an in vivo study. J Endod. 2012;38:200–3.

    Article  PubMed  Google Scholar 

  82. Vera J, Hernandez EM, Romero M, Arias A, van der Sluis LW. Effect of maintaining apical patency on irrigant penetration into the apical two millimeters of large root canals: an in vivo study. J Endod. 2012;38:1340–3.

    Article  PubMed  Google Scholar 

  83. Berbert A, Bramante CM. Endodontia prática. São Paulo: Sarvier; 1980.

    Google Scholar 

  84. Gutmann JL, Zehnder M, Levermann VM. Historical perspectives on the roots of the apical negative pressure irrigation technique in endodontics. J Hist Dent. 2014;62:32–40.

    PubMed  Google Scholar 

  85. Abarajithan M, Dham S, Velmurugan N, Valerian-Albuquerque D, Ballal S, Senthilkumar H. Comparison of Endovac irrigation system with conventional irrigation for removal of intracanal smear layer: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:407–11.

    Article  PubMed  Google Scholar 

  86. Buldur B, Kapdan A. Comparison of the EndoVac system and conventional needle irrigation on removal of the smear layer in primary molar root canals. Niger J Clin Pract. 2017;20:1168–74.

    Article  PubMed  Google Scholar 

  87. Buldur B, Kapdan A. Comparison of the antimicrobial efficacy of the EndoVac system and conventional needle irrigation in primary molar root canals. J Clin Pediatr Dent. 2017;41:284–8.

    Article  PubMed  Google Scholar 

  88. de Miranda RG, Gusman HD, Colombo AP. Antimicrobial efficacy of the EndoVac system plus PDT against intracanal Candida albicans: an ex vivo study. Braz Oral Res. 2015;29:S1806–83242015000100308.

    Article  PubMed  Google Scholar 

  89. Nielsen B, Craig Baumgartner J. Comparison of the EndoVac system to needle irrigation of root canals. J Endod. 2007;33:611–5.

    Article  PubMed  Google Scholar 

  90. Parente JM, Loushine RJ, Susin L, Gu L, Looney SW, Weller RN, et al. Root canal debridement using manual dynamic agitation or the EndoVac for final irrigation in a closed system and an open system. Int Endod J. 2010;43:1001–12.

    Article  PubMed  Google Scholar 

  91. Mitchell RP, Yang SE, Baumgartner JC. Comparison of apical extrusion of NaOCl using the EndoVac or needle irrigation of root canals. J Endod. 2010;36:338–41.

    Article  PubMed  Google Scholar 

  92. Howard RK, Kirkpatrick TC, Rutledge RE, Yaccino JM. Comparison of debris removal with three different irrigation techniques. J Endod. 2011;37:1301–5.

    Article  PubMed  Google Scholar 

  93. Schoeffel GJ. The EndoVac method of endodontic irrigation, part 2—efficacy. Dent Today. 2008;27:82, 4, 6–7.

    PubMed  Google Scholar 

  94. Silva CC, Ferreira VMD, De-Deus G, Herrera DR, Prado MD, Silva E. Effect of intermediate flush using different devices to prevent chemical smear layer formation. Braz Dent J. 2017;28:447–52.

    Article  PubMed  Google Scholar 

  95. Silva EJNL, Carvalho CR, Belladonna FG, Prado MC, Lopes RT, De-Deus G, et al. Micro-CT evaluation of different final irrigation protocols on the removal of hard-tissue debris from isthmus-containing mesial root of mandibular molars. Clin Oral Investig. 2019;23:681–7.

    Article  PubMed  Google Scholar 

  96. Siu C, Baumgartner JC. Comparison of the debridement efficacy of the EndoVac irrigation system and conventional needle root canal irrigation in vivo. J Endod. 2010;36:1782–5.

    Article  PubMed  Google Scholar 

  97. Venumbaka NR, Baskaran P, Mungara J, Chenchugopal M, Elangovan A, Vijayakumar P. Comparative evaluation of Endovac and conventional irrigating syringe on apical extrusion in primary molars. An in vitro study. J Clin Pediatr Dent. 2018;42:355–60.

    Article  PubMed  Google Scholar 

  98. Velmurugan N, Sooriaprakas C, Jain P. Apical extrusion of irrigants in immature permanent teeth by using EndoVac and needle irrigation: an in vitro study. J Dent (Tehran). 2014;11:433–9.

    Google Scholar 

  99. Kungwani ML, Prasad KP, Khiyani TS. Comparison of the cleaning efficacy of EndoVac with conventional irrigation needles in debris removal from root canal. An in-vivo study. J Conserv Dent. 2014;17:374–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Căpută PE, Retsas A, Kuijk L, Chavez de Paz LE, Boutsioukis C. Ultrasonic irrigant activation during root canal treatment: a systematic review. J Endod. 2019;45:31–44. e13.

    Article  PubMed  Google Scholar 

  101. Dioguardi M, Gioia GD, Illuzzi G, Laneve E, Cocco A, Troiano G. Endodontic irrigants: different methods to improve efficacy and related problems. Eur J Dent. 2018;12:459–66.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Plotino G, Cortese T, Grande NM, Leonardi DP, Di Giorgio G, Testarelli L, et al. New technologies to improve root canal disinfection. Braz Dent J. 2016;27:3–8.

    Article  PubMed  Google Scholar 

  103. Silva E, Rover G, Belladonna FG, Herrera DR, De-Deus G, da Silva Fidalgo TK. Effectiveness of passive ultrasonic irrigation on periapical healing and root canal disinfection: a systematic review. Br Dent J. 2019;227:228–34.

    Article  PubMed  Google Scholar 

  104. Rius L, Arias A, Aranguren JM, Romero M, de Gregorio C. Analysis of the smear layer generated by different activation systems: an in vitro study. Clin Oral Investig. 2021;25:45–51.

    Article  Google Scholar 

  105. Urban K, Donnermeyer D, Schäfer E, Bürklein S. Canal cleanliness using different irrigation activation systems: a SEM evaluation. Clin Oral Investig. 2017;21:2681–7.

    Article  PubMed  Google Scholar 

  106. Ma JZ, Shen Y, Al-Ashaw AJ, Khaleel HY, Yang Y, Wang ZJ, et al. Micro-computed tomography evaluation of the removal of calcium hydroxide medicament from C-shaped root canals of mandibular second molars. Int Endod J. 2015;48:333–41.

    Article  PubMed  Google Scholar 

  107. Neuhaus KW, Liebi M, Stauffacher S, Eick S, Lussi A. Antibacterial efficacy of a new sonic irrigation device for root canal disinfection. J Endod. 2016;42:1799–803.

    Article  PubMed  Google Scholar 

  108. Richman MJ. The use of ultrasonic in root canal therapy and root resection. J Dent Med. 1957;12:8–12.

    Google Scholar 

  109. Weller RN, Brady JM, Bernier WE. Efficacy of ultrasonic cleaning. J Endod. 1980;6:740–3.

    Article  PubMed  Google Scholar 

  110. Gu LS, Kim JR, Ling J, Choi KK, Pashley DH, Tay FR. Review of contemporary irrigant agitation techniques and devices. J Endod. 2009;35:791–804.

    Article  PubMed  Google Scholar 

  111. Blank-Goncalves LM, Nabeshima CK, Martins GH, Machado ME. Qualitative analysis of the removal of the smear layer in the apical third of curved roots: conventional irrigation versus activation systems. J Endod. 2011;37:1268–71.

    Article  PubMed  Google Scholar 

  112. Lee SJ, Wu MK, Wesselink PR. The effectiveness of syringe irrigation and ultrasonics to remove debris from simulated irregularities within prepared root canal walls. Int Endod J. 2004;37:672–8.

    Article  PubMed  Google Scholar 

  113. Metzler RS, Montgomery S. Effectiveness of ultrasonics and calcium hydroxide for the debridement of human mandibular molars. J Endod. 1989;15:373–8.

    Article  PubMed  Google Scholar 

  114. Al-Jadaa A, Paqué F, Attin T, Zehnder M. Necrotic pulp tissue dissolution by passive ultrasonic irrigation in simulated accessory canals: impact of canal location and angulation. Int Endod J. 2009;42:59–65.

    Article  PubMed  Google Scholar 

  115. de Gregorio C, Estevez R, Cisneros R, Paranjpe A, Cohenca N. Efficacy of different irrigation and activation systems on the penetration of sodium hypochlorite into simulated lateral canals and up to working length: an in vitro study. J Endod. 2010;36:1216–21.

    Article  PubMed  Google Scholar 

  116. Nagendrababu V, Jayaraman J, Suresh A, Kalyanasundaram S, Neelakantan P. Effectiveness of ultrasonically activated irrigation on root canal disinfection: a systematic review of in vitro studies. Clin Oral Investig. 2018;22:655–70.

    Article  PubMed  Google Scholar 

  117. Kosarieh E, Bolhari B, Sanjari Pirayvatlou S, Kharazifard MJ, Sattari Khavas S, Jafarnia S, et al. Effect of Er:YAG laser irradiation using SWEEPS and PIPS technique on dye penetration depth after root canal preparation. Photodiagn Photodyn Ther. 2020;33:102136.

    Article  Google Scholar 

  118. Bronnec F, Bouillaguet S, Machtou P. Ex vivo assessment of irrigant penetration and renewal during the final irrigation regimen. Int Endod J. 2010;43:663–72.

    Article  PubMed  Google Scholar 

  119. Gao Y, Haapasalo M, Shen Y, Wu H, Li B, Ruse ND, et al. Development and validation of a three-dimensional computational fluid dynamics model of root canal irrigation. J Endod. 2009;35:1282–7.

    Article  PubMed  Google Scholar 

  120. Machtou P. Investigations sur l’irrigation en endodontie [Thèse de doctorat en sciences odontologiques]. Paris: Université Paris; 1980.

    Google Scholar 

  121. Andrabi SM, Kumar A, Mishra SK, Tewari RK, Alam S, Siddiqui S. Effect of manual dynamic activation on smear layer removal efficacy of ethylenediaminetetraacetic acid and SmearClear: an in vitro scanning electron microscopic study. Aust Endod J. 2013;39:131–6.

    Article  PubMed  Google Scholar 

  122. Çapar ID, Aydinbelge HA. Surface change of root canal dentin after the use of irrigation activation protocols: electron microscopy and an energy-dispersive X-ray microanalysis. Microsc Res Tech. 2013;76:893–6.

    Article  PubMed  Google Scholar 

  123. Saber Sel D, Hashem AA. Efficacy of different final irrigation activation techniques on smear layer removal. J Endod. 2011;37:1272–5.

    Article  Google Scholar 

  124. Boutsioukis C, Psimma Z, van der Sluis LW. Factors affecting irrigant extrusion during root canal irrigation: a systematic review. Int Endod J. 2013;46:599–618.

    Article  PubMed  Google Scholar 

  125. Desai P, Himel V. Comparative safety of various intracanal irrigation systems. J Endod. 2009;35:545–9.

    Article  PubMed  Google Scholar 

  126. Wu MK, Wesselink PR. A primary observation on the preparation and obturation of oval canals. Int Endod J. 2001;34:137–41.

    Article  PubMed  Google Scholar 

  127. Hof R, Perevalov V, Eltanani M, Zary R, Metzger Z. The self-adjusting file (SAF). Part 2: mechanical analysis. J Endod. 2010;36:691–6.

    Article  PubMed  Google Scholar 

  128. Metzger Z. The self-adjusting file (SAF) system: an evidence-based update. J Conserv Dent. 2014;17:401–19.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Metzger Z, Teperovich E, Zary R, Cohen R, Hof R. The self-adjusting file (SAF). Part 1: respecting the root canal anatomy - a new concept of endodontic files and its implementation. J Endod. 2010;36:679–90.

    Article  PubMed  Google Scholar 

  130. Adiguzel O, Yigit-Ozer S, Kaya S, Uysal I, Ganidagli-Ayaz S, Akkus Z. Effectiveness of ethylenediaminetetraacetic acid (EDTA) and MTAD on debris and smear layer removal using a self-adjusting file. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:803–8.

    Article  PubMed  Google Scholar 

  131. Metzger Z, Teperovich E, Cohen R, Zary R, Paqué F, Hülsmann M. The self-adjusting file (SAF). Part 3: removal of debris and smear layer—a scanning electron microscope study. J Endod. 2010;36:697–702.

    Article  PubMed  Google Scholar 

  132. Lin J, Shen Y, Haapasalo M. A comparative study of biofilm removal with hand, rotary nickel-titanium, and self-adjusting file instrumentation using a novel in vitro biofilm model. J Endod. 2013;39:658–63.

    Article  PubMed  Google Scholar 

  133. Siqueira JF Jr, Alves FR, Almeida BM, de Oliveira JC, Roças IN. Ability of chemomechanical preparation with either rotary instruments or self-adjusting file to disinfect oval-shaped root canals. J Endod. 2010;36:1860–5.

    Article  PubMed  Google Scholar 

  134. De-Deus G, Accorsi-Mendonca T, de Carvalho e Silva L, Leite CA, da Silva D, Moreira EJ. Self-adjusting file cleaning-sha**-irrigation system improves root-filling bond strength. J Endod. 2013;39:254–7.

    Article  PubMed  Google Scholar 

  135. Abramovitz I, Relles-Bonar S, Baransi B, Kfir A. The effectiveness of a self-adjusting file to remove residual gutta-percha after retreatment with rotary files. Int Endod J. 2012;45:386–92.

    Article  PubMed  Google Scholar 

  136. Solomonov M, Paqué F, Kaya S, Adiguzel O, Kfir A, Yigit-Ozer S. Self-adjusting files in retreatment: a high-resolution micro-computed tomography study. J Endod. 2012;38:1283–7.

    Article  PubMed  Google Scholar 

  137. Voet KC, Wu MK, Wesselink PR, Shemesh H. Removal of gutta-percha from root canals using the self-adjusting file. J Endod. 2012;38:1004–6.

    Article  PubMed  Google Scholar 

  138. Siqueira JF Jr, Alves FR, Versiani MA, Rôças IN, Almeida BM, Neves MA, et al. Correlative bacteriologic and micro-computed tomographic analysis of mandibular molar mesial canals prepared by self-adjusting file, reciproc, and twisted file systems. J Endod. 2013;39:1044–50.

    Article  PubMed  Google Scholar 

  139. Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am. 1978;238:86–95.

    Article  PubMed  Google Scholar 

  140. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.

    Article  PubMed  Google Scholar 

  141. Nair PN, Luder HU. [Root canal and periapical flora: a light and electron microscopy study]. Schweiz Monatsschr Zahnmed. 1985;95:992–1003.

    Google Scholar 

  142. Zobell CE. The effect of solid surfaces upon bacterial activity. J Bacteriol. 1943;46:39–56.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Schaudinn C, Carr G, Gorur A, Jaramillo D, Costerton JW, Webster P. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM—SEM). J Microsc. 2009;235:124–7.

    Article  PubMed  Google Scholar 

  144. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.

    Article  Google Scholar 

  145. Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28:668–81.

    Article  PubMed  Google Scholar 

  146. Oppenheimer-Shaanan Y, Sibony-Nevo O, Bloom-Ackermann Z, Suissa R, Steinberg N, Kartvelishvily E, et al. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Biofilms Microbiomes. 2016;2:15031.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Busanello FH, Petridis X, So MVR, Dijkstra RJB, Sharma PK, van der Sluis LWM. Chemical biofilm removal capacity of endodontic irrigants as a function of biofilm structure: optical coherence tomography, confocal microscopy and viscoelasticity determination as integrated assessment tools. Int Endod J. 2019;52:461–74.

    Article  PubMed  Google Scholar 

  148. Tawakoli PN, Ragnarsson KT, Rechenberg DK, Mohn D, Zehnder M. Effect of endodontic irrigants on biofilm matrix polysaccharides. Int Endod J. 2017;50:153–60.

    Article  PubMed  Google Scholar 

  149. Banin E, Brady KM, Greenberg EP. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol. 2006;72:2064–9.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chavez de Paz LE, Bergenholtz G, Svensater G. The effects of antimicrobials on endodontic biofilm bacteria. J Endod. 2010;36:70–7.

    Article  PubMed  Google Scholar 

  151. Zollinger A, Mohn D, Zeltner M, Zehnder M. Short-term storage stability of NaOCl solutions when combined with dual rinse HEDP. Int Endod J. 2018;51:691–6.

    Article  PubMed  Google Scholar 

  152. Lottanti S, Gautschi H, Sener B, Zehnder M. Effects of ethylenediaminetetraacetic, etidronic and peracetic acid irrigation on human root dentine and the smear layer. Int Endod J. 2009;42:335–43.

    Article  PubMed  Google Scholar 

  153. Morago A, Ordinola-Zapata R, Ferrer-Luque CM, Baca P, Ruiz-Linares M, Arias-Moliz MT. Influence of smear layer on the antimicrobial activity of a sodium hypochlorite/etidronic acid irrigating solution in infected dentin. J Endod. 2016;42:1647–50.

    Article  PubMed  Google Scholar 

  154. Giardino L, Del Fabbro M, Morra M, Pereira T, Bombarda de Andrade F, Savadori P, et al. Dual rinse((R)) HEDP increases the surface tension of NaOCl but may increase its dentin disinfection efficacy. Odontology. 2019;107:521–9.

    Article  PubMed  Google Scholar 

  155. Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, Ferrer-Luque CM. Antimicrobial activity of a sodium hypochlorite/etidronic acid irrigant solution. J Endod. 2014;40:1999–2002.

    Article  PubMed  Google Scholar 

  156. Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, Garcia Garcia E, Hungaro Duarte MA, et al. Antimicrobial activity of chlorhexidine, peracetic acid and sodium hypochlorite/etidronate irrigant solutions against Enterococcus faecalis biofilms. Int Endod J. 2015;48:1188–93.

    Article  PubMed  Google Scholar 

  157. Neelakantan P, Varughese AA, Sharma S, Subbarao CV, Zehnder M, De-Deus G. Continuous chelation irrigation improves the adhesion of epoxy resin-based root canal sealer to root dentine. Int Endod J. 2012;45:1097–102.

    Article  PubMed  Google Scholar 

  158. De-Deus G, Namen F, Galan J Jr, Zehnder M. Soft chelating irrigation protocol optimizes bonding quality of resilon/epiphany root fillings. J Endod. 2008;34:703–5.

    Article  PubMed  Google Scholar 

  159. Carrilho E, Cardoso M, Marques Ferreira M, Marto CM, Paula A, Coelho AS. 10-MDP based dental adhesives: adhesive interface characterization and adhesive stability—a systematic review. Materials (Basel). 2019;12:790.

    Article  Google Scholar 

  160. De-Deus G, Reis C, Paciornik S. Critical appraisal of published smear layer-removal studies: methodological issues. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:531–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo De Deus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Deus, G., Silva, E.J.N.L., Souza, E., Versiani, M.A., Zehnder, M., Zuolo, M. (2022). Sha** for Cleaning: Reconsidering Root Canal Debridement. In: De Deus, G., Silva, E.J.N.L., Souza, E., Versiani, M.A., Zuolo, M. (eds) Sha** for Cleaning the Root Canals. Springer, Cham. https://doi.org/10.1007/978-3-030-84617-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84617-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84616-9

  • Online ISBN: 978-3-030-84617-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation