Plug-in Hybrid Electric Buses with Different Battery Chemistries Total Cost of Ownership Planning and Optimization at Fleet Level Based on Battery Aging

  • Chapter
  • First Online:
Intelligent Control and Smart Energy Management

Abstract

This chapter focuses on a hierarchical energy management strategy design methodology for total cost of ownership management at fleet level. A state of the art is presented of the different proposed learning-based energy management strategies and fleet energy management approaches. Digitalization, the new trend of monitoring the operation of each vehicle, and cloud computing new techniques, allowing to carry out heavier calculations on servers, have derived from new energy management strategy techniques and degrees of freedom. The fleet operation data acquisition allows to upgrade the management level from the local vehicle level to the fleet level. The fleet-level point of view facilitates the decisions when updating the energy management strategy and gives an additional degree of freedom of managing and optimizing the whole fleet. To exploit the new degrees of freedom, the fleet is reorganized, and the energy management strategy is updated throughout the bus lifetime. These decisions are made based on the planned total cost of ownership for each type of plug-in hybrid electric bus with determined battery chemistry. The most suitable decisions will be evaluated according to each type of bus, optimizing the total cost of ownership further. Improvements of the whole total cost of ownership in both fleets have been obtained, proving the need of EMS update and fleet reorganization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Roggea, E. van der Hurkc, A. Larsenc, D.U. Sauer, Electric bus fleet size and mix problem with optimization of charging infrastructure. Appl. Energy 211, 282–295 (2018)

    Article  Google Scholar 

  2. A. Lajunen, Lifecycle costs and charging requirements of electric buses with different charging methods. J. Clean. Prod. 172, 56–67 (2018). https://doi.org/10.1016/j.jclepro.2017.10.066

    Article  Google Scholar 

  3. H. Zhang, X. Li, X. Liu, J. Yan, Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management. Appl. Energy 241, no. March, 483–490 (2019). https://doi.org/10.1016/j.apenergy.2019.02.040

  4. M.F. M. Sabri, K.A. Danapalasingam, M.F. Rahmat, A review on hybrid electric vehicles architecture and energy management strategies. Renew. Sust. Energ. Rev. 53, 1433–1442 (2016). http://dx.doi.org/10.1016/j.rser.2015.09.036

    Article  Google Scholar 

  5. Y. Hu, W. Li, K. Xu, T. Zahid, F. Qin, C. Li, Energy management strategy for a hybrid electric vehicle based on deep reinforcement learning. Appl. Sci. 8(2), 187 (2018)

    Google Scholar 

  6. H. Tian, S.E. Li, X. Wang, Y. Huang, G. Tian, Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus. Energy 142, 55–67 (2018)

    Article  Google Scholar 

  7. A. Lajunen, Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transport. Res. C Emerg. Technol. 38, 1–15 (2014). http://dx.doi.org/10.1016/j.trc.2013.10.008

    Article  Google Scholar 

  8. J.P. Ribau, C.M. Silva, J.M. Sousa, Efficiency, cost and life cycle CO2optimization of fuel cell hybrid and plug-in hybrid urban buses. Appl. Energy 129, 320–335 (2014)

    Article  Google Scholar 

  9. M. Mahmoud, R. Garnett, M. Ferguson, P. Kanaroglou, Electric buses: a review of alternative powertrains. Renew. Sust. Energ. Rev. 62, 673–684 (2016)

    Article  Google Scholar 

  10. T. Randall, Here’s how electric cars will cause the next oil crisis (2016). https://www.bloomberg.com/features/2016-ev-oil-crisis. Accessed 26.04.2018

  11. M. Glotz-Richter, H. Koch, Electrification of public transport in cities (Horizon 2020 ELIPTIC Project). Transport. Res. Proc. 14, 2614–2619 (2016). https://doi.org/10.1016/j.trpro.2016.05.416

    Article  Google Scholar 

  12. S. Bakker, R. Konings, The transition to zero-emission buses in public transport – the need for institutional innovation. Transport. Res. D Transp. Environ. No. March, 0–1 (2017). https://doi.org/10.1016/j.trd.2017.08.023

  13. B. Sen, T. Ercan, O. Tatari, Does a battery-electric truck make a difference? – life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. J. Clean. Prod. 141, 110–121 (2017). https://doi.org/10.1016/j.jclepro.2016.09.046

    Article  Google Scholar 

  14. K. Palmer, J.E. Tate, Z. Wadud, J. Nellthorp, Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Appl. Energy 209, No. July 2017, 108–119 (2018). https://doi.org/10.1016/j.apenergy.2017.10.089

    Article  Google Scholar 

  15. M. Ranta, M. Pihlatie, A. Pellikka, J. Laurikko, P. Rahkola, J. Anttila, Analysis and comparison of energy efficiency of commercially available battery electric buses, in IEEE Vehicle Power and Propulsion Conference (VPPC) (2017)

    Google Scholar 

  16. M. Mesgarpour, D. Landa-Silva, I. Dickinson, Overview of telematics-based prognostics and health management systems for commercial vehicles. Commun. Comput. Inform. Sci. 395, 123–130 (2013)

    Article  Google Scholar 

  17. C. Marina Martinez, X. Hu, D. Cao, E. Velenis, B. Gao, M. Wellers, Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Trans. Veh. Technol. PP(99), 1–1 (2016). http://ieeexplore.ieee.org/document/7496906/

  18. C. Manzie, H. Watson, S. Halgamuge, Fuel economy improvements for urban driving: hybrid vs. intelligent vehicles. Transport. Res. C Emerg. Technol. 15(1), 1–16 (2007)

    Google Scholar 

  19. J.A. López-Ibarra, N. Goitia-Zabaleta, V.I. Herrera, H. Gazta ñaga, H. Camblong, Battery aging conscious intelligent energy management strategy and sensitivity analysis of the critical factors for plug-in hybrid electric buses. eTransportation 5(2016), 100061 (2020). https://linkinghub.elsevier.com/retrieve/pii/S2590116820300187

  20. Z. Bi, L. Song, R. De Kleine, C.C. Mi, G.A. Keoleian, Plug-in vs. wireless charging: life cycle energy and greenhouse gas emissions for an electric bus system. Appl. Energy 146, No. February, 11–19 (2015). https://doi.org/10.1016/j.apenergy.2015.02.031

  21. M.A. Hannan, M.M. Hoque, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: issues and challenges. Renew. Sust. Energ. Rev. 69, No. November 2016, 771–789 (2017). https://doi.org/10.1016/j.rser.2016.11.171

    Article  Google Scholar 

  22. H. Budde-Meiwes, J. Drillkens, B. Lunz, J. Muennix, S. Rothgang, J. Kowal, D.U. Sauer, A review of current automotive battery technology and future prospects. Proc. Instit. Mech. Eng. D J. Automob. Eng. 227(5), 761–776 (2013)

    Article  Google Scholar 

  23. D.H. Doughty, E.P. Roth, A general discussion of Li ion battery safety. Interface Mag. 21(2), 37–44 (2012). http://interface.ecsdl.org/cgi/doi/10.1149/2.F03122if

    Google Scholar 

  24. J.A. López-Ibarra, H. Gaztañaga, A. Saez-de Ibarra, H. Camblong, Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging. Appl. Energy 280, No. March, 115887 (2020). https://doi.org/10.1016/j.apenergy.2020.115887

  25. Emission test cycles, worldwide engine and vehicle test cycles (2017). https://www.dieselnet.com/standards/cycles/index.php. Accessed 26.04.2018

  26. J.A. López-Ibarra, V.I. Herrera, H. Camblong, A. Milo, H. Gaztañaga, Energy management improvement based on fleet digitalization data exploitation for hybrid electric buses, in Computational Intelligence and Optimization Methods for Control Engineering Energy, ed. by B. Maude Josée, P.M. Pardalos, J. Sanchis Sáez (Springer Nature, Cham, 2019), ch. 14, pp. 321–355. http://springer.longhoe.net/10.1007/978-3-030-25446-9_14

  27. J.A. López-ibarra, N. Goitia-zabaleta, A. Milo, H. Camblong, H. Gaztañaga, Battery and fuel cell aging conscious intelligent energy management battery and fuel cell aging conscious intelligent energy management strategy for hydrogen hybrid electric buses. Trans. Res. Arena, No. April, 0–10 (2020). https://www.traficom.fi/sites/default/files/media/publication/TRA2020-Book-of-Abstract-Traficom-research-publication.pdf

  28. O. Sundström, L. Guzzella, P. Soltic, Optimal hybridization in two parallel hybrid electric vehicles using dynamic programming, in Proceedings of the 17th IFAC World Congress, vol. 1 (2008), pp. 4642–4647. http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2008/data/papers/2452.pdf

  29. L. Guzzella, A. Sciarretta, Vehicle Propulsion Systems (Springer, Berlin, 2005)

    Google Scholar 

  30. V. Herrera, Optimized energy management strategies and sizing of hybrid storage systems for transport applications. Doctoral Thesis (2017). https://addi.ehu.es/handle/10810/25887

  31. V.I. Herrera, A. Milo, H. Gaztañaga, I. Etxeberria-Otadui, I. Villarreal, H. Camblong, Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway. Appl. Energy 169, 831–845 (2016)

    Article  Google Scholar 

  32. Kokam li-ion/polymer cell. http://kokam.com/data/Kokam_Cell_Brochure_V.4.pdf. Accessed 26.04.2018

  33. S. Jenu, I. Deviatkin, A. Hentunen, M. Myllysilta, S. Viik, M. Pihlatie, Reducing the climate change impacts of lithium-ion batteries by their cautious management through integration of stress factors and life cycle assessment. J. Energy Storage 27, No. November 2019, 101023 (2020). https://doi.org/10.1016/j.est.2019.101023

  34. N. Takami, H. Inagaki, Y. Tatebayashi, H. Saruwatari, K. Honda, S. Egusa, High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. J. Power Sources 244, 469–475 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.055

    Article  Google Scholar 

  35. R. Dufo, Dimensionamiento y control optimo de sistemas híbridos aplicando algorítmos evolutivos. Doctoral Thesis (2007). https://dialnet.unirioja.es/servlet/tesis?codigo=19604

  36. V. I. Herrera, A. Milo, H. Gaztanaga and H. Camblong, Multi-Objective Optimization of Energy Management and Sizing for a Hybrid Bus with Dual Energy Storage System, IEEE Vehicle Power and Propulsion Conference (VPPC), (2016), pp. 1–6, https://doi.org/10.1109/VPPC.2016.7791731

  37. W.A. Facinelli, Modeling and simulation of lead-acid batteries for photovoltaic systems. Doctoral Thesis (1983). https://www.osti.gov/biblio/6132982-modeling-simulation-lead-acid-batteriesphotovoltaic-systems

  38. D.U. Sauer, H. Wenzl, Comparison of different approaches for lifetime prediction of electrochemical systems-Using lead-acid batteries as example. J. Power Sources 176(2), 534–546 (2008)

    Article  Google Scholar 

  39. M. Mabrey, Advantages and marine applications of various lithium ion battery chemistries, in Battery Propulsion Conference (IEEE, Piscataway, 2016). www.maritime.dot.gov/sites/marad.dot.gov/files/docs/innovation-research/meta/3376/spear-lithiumionchemistries.pdf

    Google Scholar 

  40. M. Rogge, E. van der Hurk, A. Larsen, D.U. Sauer, Electric bus fleet size and mix problem with optimization of charging infrastructure. Appl. Energy 211, No. November 2017, 282–295 (2018). https://doi.org/10.1016/j.apenergy.2017.11.051

    Article  Google Scholar 

  41. L. Nurhadi, S. Borén, H. Ny, A sensitivity analysis of total cost of ownership for electric public bus transport systems in Swedish medium sized cities. Transport. Res. Proc. 3, No. July, 818–827 (2014). https://doi.org/10.1016/j.trpro.2014.10.058

    Article  Google Scholar 

  42. M. Pihlatie, S. Kukkonen, T. Halmeaho, V. Karvonen, N.O. Nylund, Fully electric city buses – the viable option, in 2014 IEEE International Electric Vehicle Conference, IEVC 2014 (2015)

    Google Scholar 

  43. B. Nykvist, M. Nilsson, Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5(4), 329–332 (2015)

    Article  Google Scholar 

  44. H. Ding, Z. Hu, Y. Song, Value of the energy storage system in an electric bus fast charging station. Appl. Energy 157, 630–639 (2015). https://doi.org/10.1016/j.apenergy.2015.01.058

    Article  Google Scholar 

  45. O. Topal, S. Nakir, Total cost of ownership based economic analysis of diesel, CNG and electric bus concepts for the public transport in Istanbul City. Energies 11(9) (2018)

    Google Scholar 

  46. I. Mareev, J. Becker, D.U. Sauer, Battery dimensioning and life cycle costs analysis for a heavy-duty truck considering the requirements of long-haul transportation. Energies 11(1) (2018)

    Google Scholar 

  47. Y. Miao, P. Hynan, A. Von Jouanne, A. Yokochi, Current li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 12(6), 1–20 (2019)

    Article  Google Scholar 

  48. F. Meishner, B. Satvat, D.U. Sauer, Battery electric buses in European cities: economic comparison of different technological concepts based on actual demonstrations, in Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference, VPPC 2017, vol. 2018 (2018), pp. 1–6

    Google Scholar 

  49. H.J. Undertaking, Strategies for joint procurement of fuel cell buses a study for the Fuel Cells and Hydrogen Joint Undertaking. Fuel Cells and Hydrogen Joint Undertaking (FCH JU). Technical Report (2018)

    Google Scholar 

  50. B. Emonts, M. Reuß, P. Stenzel, L. Welder, F. Knicker, T. Grube, K. Görner, M. Robinius, D. Stolten, Flexible sector coupling with hydrogen: a climate-friendly fuel supply for road transport. Int. J. Hydrogen Energy 44(26), 12 918–12 930 (2019)

    Google Scholar 

  51. O. Sundström, D. Ambühl, L. Guzzella, On implementation of dynamic programming for optimal control problems with final state constraints. Oil Gas Sci. Technol. Revue de l’Institut Français du Pétrole 65(1), 91–102 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Ander López-Ibarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Ibarra, J.A., Gaztañaga, H., Olmos, J., Saez-de-Ibarra, A., Camblong, H. (2022). Plug-in Hybrid Electric Buses with Different Battery Chemistries Total Cost of Ownership Planning and Optimization at Fleet Level Based on Battery Aging. In: Blondin, M.J., Fernandes Trovão, J.P., Chaoui, H., Pardalos, P.M. (eds) Intelligent Control and Smart Energy Management. Springer Optimization and Its Applications, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-030-84474-5_2

Download citation

Publish with us

Policies and ethics

Navigation