Complications of Prematurity

  • Chapter
  • First Online:
Keeling's Fetal and Neonatal Pathology

Abstract

Prematurity is the primary cause of neonatal death world-wide, and complications of prematurity are inversely proportional to the gestational age at delivery. Morbidity and mortality occurs secondary to the immaturity of the organs, or more commonly morbidity relates to the medical intervention required to keep the premature infant alive. The chapter explores the pathology of the various organ systems impacted by prematurity, and the pertinent clinical associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization. Preterm Birth 19, Feb.2018. https://www.who.int/news-room/fact-sheets/detail/preterm-birth.

  2. World Health Organization. Born too soon: the global action report on preterm birth. 2012; ISBN: 9789241503433.

    Google Scholar 

  3. Platt MJ. Outcomes in preterm infants. Public Health. 2014;128:399–403.

    Article  CAS  PubMed  Google Scholar 

  4. Jones KD, Dishop MK, Colby TV. Developmental and pediatric lung disease. In: Leslie KO, Wick MR, editors. Practical pulmonary pathology. Philadelphia: Elsevier Saunders; 2018. p. 103–5.

    Google Scholar 

  5. Dyer J. Neonatal respiratory distress syndrome: tackling a worldwide problem. P&T. 2019;44:12–4.

    Google Scholar 

  6. Wigglesworth JS, Singer DB. Fetal and perinatal pathology. 2nd ed. Malden: Blackwell Science; 1998. p. 575–9.

    Google Scholar 

  7. Stocker JT. Pathologic features of long-standing "healed" bronchopulmonary dysplasia: a study of 28 3- to 40-month-old infants. Hum Pathol. 1986;17:943–61.

    Article  CAS  PubMed  Google Scholar 

  8. Coalson JJ. Pathology of new bronchopulmonary dysplasia. Semin Neonatol. 2003;8:73–81.

    Article  PubMed  Google Scholar 

  9. Reed RC, Waters BL, Siebert JR. Complications of percutaneous thoracostomy in neonates and infants. J Perinatol. 2016;36:296–9.

    Article  CAS  PubMed  Google Scholar 

  10. Nakanishi H, Suenaga H, Uchiyama A, Kusuda S, Neonatal Research Network, Japan. Persistent pulmonary hypertension of the newborn in extremely preterm infants: a Japanese cohort study. Arch Dis Child Fetal Neonatal Ed. 2018;103:F554–61.

    Article  PubMed  Google Scholar 

  11. Bui CB, Pang MA, Sehgal A, et al. Pulmonary hypertension associated with bronchopulmonary dysplasia in preterm infants. J Reprod Immunol. 2017;124:21–9.

    Article  PubMed  Google Scholar 

  12. Gilbert-Barness E, Spicer DE, Steffensen TS. Handbook of pediatric pathology. 2nd ed. New York: Springer; 2014. p. 338–47.

    Book  Google Scholar 

  13. Wang TT, Zhou M, Hu XF, Liu JQ. Perinatal risk factors for pulmonary hemorrhage in extremely low-birth-weight infants. World J Pediatr. 2020;16:299–304.

    Article  PubMed  Google Scholar 

  14. Armstrong D, Halliday W, Hawkings C, Takashima S. Pediatric neuropathology: a text-atlas. Tokyo: Springer; 2007.

    Book  Google Scholar 

  15. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34.

    Article  CAS  PubMed  Google Scholar 

  16. Gotardo JW, Volkmer NFV, Stangler GP, Dornelles AD, Bohrer BBA, Carvalho CG. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: a systematic review and meta-analysis. PLoS One. 2019;14:e0223427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calisici E, Eras Z, Oncel MY, Oguz SS, Gokce İK, Dilmen U. Neurodevelopmental outcomes of premature infants with severe intraventricular hemorrhage. J Matern Fetal Neonatal Med. 2015;28:2115–20.

    Article  PubMed  Google Scholar 

  18. van Haastert IC, Groenendaal F, Uiterwaal CS, et al. Decreasing incidence and severity of cerebral palsy in prematurely born children. J Pediatr. 2011;159:86–91.

    Article  PubMed  Google Scholar 

  19. Gilard V, Chadie A, Ferracci FX, et al. Post hemorrhagic hydrocephalus and neurodevelopmental outcomes in a context of neonatal intraventricular hemorrhage: an institutional experience in 122 preterm children. BMC Pediatr. 2018;18:288.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ghotra S, Vincer M, Allen VM, Khan N. A population-based study of cystic white matter injury on ultrasound in very preterm infants born over two decades in Nova Scotia, Canada. J Perinatol. 2019;39:269–77.

    Article  PubMed  Google Scholar 

  21. Hargitai B, Szabó V, Hajdú J, et al. Apoptosis in various organs of preterm infants: histopathologic study of lung, kidney, liver, and brain of ventilated infants. Pediatr Res. 2001;50:110–4.

    Article  CAS  PubMed  Google Scholar 

  22. Gilles F, Gressens P, Dammann O, Leviton A. Hypoxia-ischemia is not an antecedent of most preterm brain damage: the illusion of validity. Dev Med Child Neurol. 2018;60:120–5.

    Article  PubMed  Google Scholar 

  23. Kim SJ, Port AD, Swan R, Campbell JP, Chan RVP, Chiang MF. Retinopathy of prematurity: a review of risk factors and their clinical significance. Surv Ophthalmol. 2018;63:618–37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kushner BJ, Essner D, Cohen IJ, Flynn JT. Retrolental fibroplasia. II. Pathologic correlation. Arch Ophthalmol. 1977;95:29–38.

    Article  CAS  PubMed  Google Scholar 

  25. Rich BS, Dolgin SE. Necrotizing enterocolitis. Pediatr Rev. 2017;38:552–9.

    Article  PubMed  Google Scholar 

  26. Niemarkt HJ, De Meij TG, van Ganzewinkel CJ, et al. Necrotizing enterocolitis, gut microbiota, and brain development: role of the brain-gut axis. Neonatology. 2019;115:423–31.

    Article  PubMed  Google Scholar 

  27. Saroha V, Josephson CD, Patel RM. Epidemiology of necrotizing enterocolitis: new considerations regarding the influence of red blood cell transfusions and anemia. Clin Perinatol. 2019;46:101–17.

    Article  PubMed  Google Scholar 

  28. Neu J, Pammi M. Necrotizing enterocolitis: The intestinal microbiome, metabolome and inflammatory mediators. Semin Fetal Neonatal Med. 2018;23:400–5.

    Article  PubMed  Google Scholar 

  29. Suply E, Leclair MD, Neunlist M, Roze JC, Flamant C. Spontaneous intestinal perforation and necrotizing enterocolitis: a 16-year retrospective study from a single center. Eur J Pediatr Surg. 2015;25:520–5.

    Article  PubMed  Google Scholar 

  30. Izraeli S, Freud E, Mor C, Litwin A, Zer M, Merlob P. Neonatal intestinal perforation due to congenital defects in the intestinal muscularis. Eur J Pediatr. 1992;151:300–3.

    Article  CAS  PubMed  Google Scholar 

  31. Kawase Y, Ishii T, Arai H, Uga N. Gastrointestinal perforation in very low-birthweight infants. Pediatr Int. 2006;48:599–603.

    Article  PubMed  Google Scholar 

  32. Yang T, Huang Y, Li J, et al. Neonatal gastric perforation: case series and literature review. World J Surg. 2018;42:2668–73.

    Article  PubMed  Google Scholar 

  33. Shah J, Singhal N, da Silva O, et al. Intestinal perforation in very preterm neonates: risk factors and outcomes. J Perinatol. 2015;35:595–600.

    Article  CAS  PubMed  Google Scholar 

  34. Postuma R, Trevenen CL. Liver disease in infants receiving total parenteral nutrition. Pediatrics. 1979;63:110–5.

    Article  CAS  PubMed  Google Scholar 

  35. Pereira GR, Sherman MS, DiGiacomo J, Ziegler M, Roth K, Jacobowski D. Hyperalimentation-induced cholestasis. Increased incidence and severity in premature infants. Am J Dis Child. 1981;135:842–5.

    Article  CAS  PubMed  Google Scholar 

  36. Zambrano E, El-Hennawy M, Ehrenkranz RA, Zelterman D, Reyes-Múgica M. Total parenteral nutrition induced liver pathology: an autopsy series of 24 newborn cases. Pediatr Dev Pathol. 2004;7:425–32.

    Article  PubMed  Google Scholar 

  37. Guglielmi FW, Regano N, Mazzuoli S, et al. Cholestasis induced by total parenteral nutrition. Clin Liver Dis. 2008;12:97–110.

    Article  PubMed  Google Scholar 

  38. Singer DB, Neave C, Oyer CE, Pinar H. Hepatic subcapsular hematomas in fetuses and neonatal infants. Pediatr Dev Pathol. 1999;2:215–20.

    Article  CAS  PubMed  Google Scholar 

  39. Raghavan M, Stansfield J. Spontaneous liver hemorrhage during laparotomy in a preterm infant. Paediatr Anaesth. 2008;18:671–2.

    Article  PubMed  Google Scholar 

  40. Faienza MF, D’Amato E, Natale MP, et al. Metabolic bone disease of prematurity: diagnosis and management. Front Pediatr. 2019;7:143.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oppenheimer SJ, Snodgrass GJ. Neonatal rickets. Histopathology and quantitative bone changes. Arch Dis Child. 1980;55:945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGrath EE, Blades Z, Anderson PB. Chylothorax: aetiology, diagnosis and therapeutic options. Respir Med. 2010;104:1–8.

    Article  PubMed  Google Scholar 

  43. Zasada IA, Banner J, Bugge A. “Nutrition or no nutrition?”: Chylothorax or leakage of total parenteral nutrition? Forensic Sci Med Pathol. 2019;15:470–3.

    Article  PubMed  Google Scholar 

  44. Amodio J, Abramson S, Berdon W, Stolar C, Markowitz R, Kasznica J. Iatrogenic causes of large pleural fluid collections in the premature infant: ultrasonic and radiographic findings. Pediatr Radiol. 1987;17:104–8.

    Article  CAS  PubMed  Google Scholar 

  45. Rogers BB, Berns SD, Maynard EC, Hansen TW. Pericardial tamponade secondary to central venous catheterization and hyperalimentation in a very low birthweight infant. Pediatr Pathol. 1990;10:819–23.

    Article  CAS  PubMed  Google Scholar 

  46. Warren M, Thompson KS, Popek EJ, Vogel H, Hicks J. Pericardial effusion and cardiac tamponade in neonates: sudden unexpected death associated with total parenteral nutrition via central venous catheterization. Ann Clin Lab Sci. 2013;43:163–71.

    PubMed  Google Scholar 

  47. Ahmadian A, Manwaring J, Truong D, et al. Accidental intracranial infusion of parenteral nutrition in a preterm neonate. J Neurosurg Pediatr. 2015;16:458–62.

    Article  PubMed  Google Scholar 

  48. Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis. Lancet. 2017;390:1770–80.

    Article  PubMed  Google Scholar 

  49. Nadeau HC, Subramaniam A, Andrews WW. Infection and preterm birth. Semin Fetal Neonatal Med. 2016;21:100–5.

    Article  PubMed  Google Scholar 

  50. Stoll BJ, Hansen NI, Sánchez PJ, et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011;127:817–26.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cernada M, Brugada M, Golombek S, Vento M. Ventilator-associated pneumonia in neonatal patients: an update. Neonatology. 2014;105:98–107.

    Article  PubMed  Google Scholar 

  52. El-Naggar W, Afifi J, McMillan D, et al. Epidemiology of meningitis in Canadian neonatal intensive care units. Pediatr Infect Dis J. 2019;38:476–80.

    Article  PubMed  Google Scholar 

  53. Qureshi F, Jacques SM, Bendon RW, et al. Candida funisitis: a clinicopathologic study of 32 cases. Pediatr Dev Pathol. 1998;1(2):118–24.

    Article  CAS  PubMed  Google Scholar 

  54. Öncü B, Belet N, Emecen AN, Birinci A. Health care-associated invasive Candida infections in children. Med Mycol. 2019;57:929–36.

    Article  PubMed  Google Scholar 

  55. Di Renzo GC, Tosto V, Giardina I. The biological basis and prevention of preterm birth. Best Pract Res Clin Obstet Gynaecol. 2018;52:13–22.

    Article  PubMed  Google Scholar 

  56. Nijman TA, van Vliet EO, Benders MJ, et al. Placental histology in spontaneous and indicated preterm birth: a case control study. Placenta. 2016;48:56–62.

    Article  PubMed  Google Scholar 

  57. Helmo FR, Alves EAR, Moreira RAA, et al. Intrauterine infection, immune system and premature birth. J Matern Fetal Neonatal Med. 2018;31:1227–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly Barton Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lao, G., Rogers, B.B. (2022). Complications of Prematurity. In: Khong, T.Y., Malcomson, R.D.G. (eds) Keeling's Fetal and Neonatal Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-84168-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84168-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84167-6

  • Online ISBN: 978-3-030-84168-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation