Plants Showing Antiviral Activity with Emphasis on Secondary Metabolites and Biological Screening

  • Living reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 24 Accesses

Abstract

Plants have been used for centuries in traditional medicine systems for their therapeutic properties. In recent years, there has been growing interest in exploring the antiviral potential of various plant species. This review aims to provide an overview of plants showing antiviral activity, with a specific focus on the biological screening programs employed to identify their antiviral properties. A comprehensive search of scientific literature and databases was conducted to compile a list of 100 plant species known for their antiviral activity. Each plant was categorized based on its family, and the phytoconstituents responsible for the observed antiviral effects were identified. Furthermore, the specific disorders targeted by these plants were also documented. The phytoconstituents responsible for the antiviral activity of these plants were diverse and included flavonoids, alkaloids, terpenoids, polysaccharides, and phenolic compounds. These bioactive constituents exhibited various mechanisms of action, such as viral replication inhibition, immune modulation, and antioxidative effects. The disorders targeted by these antiviral plants encompassed a wide range of viral infections, including herpes simplex virus, influenza, respiratory infections, and hepatitis. Additionally, some plants showed efficacy in managing digestive disorders, skin disorders, and immune system support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AIDS:

Acquired immune deficiency syndrome

CDRI:

Central Drug Research Institute

ELISAs:

Enzyme-linked immunosorbent assays

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HSV:

Herpes simplex virus

HTS:

High-throughput screening

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide

NCE:

New chemical compounds

RSV:

Respiratory syncytial virus

SARS CoV:

Severe acute respiratory syndrome coronavirus

SPR:

Surface plasmon resonance

SYN:

Synchronize sequence number

TT:

Tetanus toxoid

VSV:

Vesicular stomatitis virus

WHO:

World Health Organization

References

  1. Dhawan BN (2012) Anti-viral activity of Indian plants. Proc Natl Acad Sci India Sect B Biol Sci 82(1):209–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jaime MF, Redko F, Muschietti LV, Campos RH, Martino VS, Cavallaro LV (2013) In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol J 10(1):1–0

    Google Scholar 

  3. Rajbhandari M, Wegner U, Jülich M, Schoepke T, Mentel R (2001) Screening of Nepalese medicinal plants for antiviral activity. J Ethnopharmacol 74(3):251–255

    Article  CAS  PubMed  Google Scholar 

  4. Gurjar VK, Pal D, Patel AD, (2020) Recent advances in chemistry and synthesis of pyrazole derivatives as potential promising antimicrobial agents in Pyrazole preparation and uses, Editor Dilipkumar Pal, NOVA Science, USA, ISBN Number: 978–1–53618-250-7

    Google Scholar 

  5. Pal D, Mandal M, Senthilkumar MGP, Padhiari A (2006) Antibacterial activity of methanol extract of Cuscuta reflexa Roxb. Stem and Corchorus olitorius Linn. seed. Fitoterapia 77(7–8):589–591

    Article  CAS  PubMed  Google Scholar 

  6. Mohanta TK, Patra JK, Rath SK, Pal D, Thatoi HN (2007) Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium L.f. Sci Res Essays 2(11):486–490

    Google Scholar 

  7. Pal D, Singh V, Pandey DD, Maurya RK (2014) Synthesis, characterization and antimicrobial evaluation of some 1, 2, 4-triazole derivatives. Int J Pharm and Pharm Sci 6(8):213–216

    CAS  Google Scholar 

  8. Pal D, Tripathy R, Pandey DD, Mishra P (2014) Synthesis, characterization, antimicrobial and pharmacological evaluation of some 2,5-disubstituted sulphonyl amino 1,3,4- oxadiazole and 2-amino-disubstituted 1,3,4-thiadiazole derivatives. J Adv Pharm Tech Res, 196–201

    Google Scholar 

  9. Rani P, Pal D, Hegde RR, Hashim SR (2016) Acetamides: chemotherapeutic agents for inflammation associated cancers. J Chemother 28(4):255–265

    Article  CAS  PubMed  Google Scholar 

  10. Saha S, Pal D, Kumar S (2017) Antifungal and antibacterial activities of phenyl and ortho hydroxyl phenyl linked imidazolyl triazolo hydroxamic acid derivatives. Inventi Rapid: Med Chem 1:1–8

    Google Scholar 

  11. Vimalanathan S, Ignacimuthu S, Hudson JB (2009) Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharma Bio 47:422–429

    Article  Google Scholar 

  12. Zitterl-Eglseer K, Marschik T (2020) Antiviral medicinal plants of veterinary importance: a literature review. Planta Medica 86(15):1058–1072. https://doi.org/10.1055/a-1224-6115

  13. Denaro M, Smeriglio A, Barreca D, De Francesco C, Occhiuto C, Milano G, Trombetta D (2020) Phytother Res 34(4):742–768

    Article  PubMed  Google Scholar 

  14. Muntean DL, Crișan O (2019) Biological and chemical insights of beech (Fagus sylvatica L.) bark: a source of bioactive compounds with functional properties. Antioxidants 8(9):417

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lazarus JV, Safreed-Harmon K, Barton SE, Costagliola D, Dedes N, Del Amo VJ, Rockstroh JK (2016) Beyond viral suppression of HIV – the new quality of life frontier. BMC Med 14(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krammer F (2015) Emerging influenza viruses and the prospect of a universal influenza virus vaccine. Biotechnol J 10(5):690–701

    Article  CAS  PubMed  Google Scholar 

  17. Kew MC (2013) Hepatitis viruses (other than hepatitis B and C viruses) as causes of hepatocellular carcinoma: an update. J Viral Hepat 20(3):149–157

    Article  CAS  PubMed  Google Scholar 

  18. Kesson AM (2007) Respiratory virus infections. Paediatr Respir Rev 8(3):240–248

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Zhou J, Luo Y (2013) Recent advances in natural products from plants for the treatment of liver diseases. Eur J Med Chem 63:570–577

    Article  Google Scholar 

  21. Rahman MM, Gray AI (2020) Natural product-based antiviral research: in vitro and in vivo approaches. In: Rasool N (ed) Natural products and drug discovery: an integrated approach. Elsevier, Amsterdam, pp 55–89

    Google Scholar 

  22. Hirsch MS (2017) Antiviral agents: mechanisms of action and clinical use. In: Brunton LL, Hilal-Dandan R, Knollmann BC (eds) . Goodman & Gilman’s the pharmacological basis of therapeutics. 13th edn McGraw-Hill Education, New York, pp 1003–1022

    Google Scholar 

  23. Zhang X, Zhou X, Hu X (2014) Advances in screening methods for detecting antibacterial and antiviral compounds from traditional Chinese medicinal plants. J Ethnopharmacol 155(1):154–164

    Google Scholar 

  24. Kralj J, Gornik I, Maravić A (2011) Cell-based assays in high-throughput screening for drug discovery. Int J High Throughput Screen 2011(2):1–16

    Google Scholar 

  25. Gopinath SCB, Tang TH, Chen Y (2012) Citric acid coated gold nanoparticles for rapid detection of avian influenza virus H5N1. Sens Actuators B Chem 166-167:430–437

    Google Scholar 

  26. Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S (2021) Phytochemicals from plant foods as potential source of antiviral agents: an overview. Pharmaceuticals 14(4):381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z (2008) Antiviral potentials of medicinal plants. Virus Res 131(2):111–120

    Article  CAS  PubMed  Google Scholar 

  28. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res 10:354–367

    Article  CAS  PubMed  Google Scholar 

  29. Lin D, **ao M, Zhao J, Li Z, **ng B, Li X, Ming D (2019) The efficacy and safety of Echinacea in preventing viral respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. eCAM 1–17

    Google Scholar 

  30. Sharma A, Sharma S, Joshi VK (2017) Antiviral potential of medicinal plants: an overview. IJPSR 8(5):1874–1882

    Google Scholar 

  31. Rajasekaran D, Palombo EA, Chia Yeo T, Lim Siok Ley D, Lee Tu C, Malherbe F, Grollo L (2013) Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS One 8(11):79293

    Article  Google Scholar 

  32. Anbazhagan GK, Palaniyandi S, Joseph B (2019) Antiviral plant extracts. InPlant Extracts IntechOpen

    Google Scholar 

  33. Kapoor R, Sharma B, Kanwar SS (2017) Antiviral phytochemicals: an overview. Biochem Physiol 6(2):7

    Article  Google Scholar 

  34. Ramesh V, Kulkarni SA, Velusamy P, Devadasan V, Devaraju P, Rajnish KN, Madhavan T, Anbu P, Ramasamy P, Sundarraj R (2022) Current update of Phytotherapeutic agents in the treatment of COVID-19: in-silico based virtual screening approach for the development of antiviral drug. Front Biosci (Landmark Ed) 27(4):123

    Article  CAS  PubMed  Google Scholar 

  35. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Disco 4(2):145–160

    Article  CAS  Google Scholar 

  36. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  CAS  PubMed  Google Scholar 

  37. Svenson S (2011) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71(3):445–462

    Article  Google Scholar 

  38. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  39. Kim YC, Prausnitz MR (2012) Enabling skin vaccination using new delivery technologies. Drug Deliv Transl Res 2(1):11–17

    Google Scholar 

  40. Panraksa P, Ramphan S, Khongwichit S, Smith DR (2017) Activity of andrographolide against dengue virus. Antivir Res 139:69–78

    Article  CAS  PubMed  Google Scholar 

  41. Sharif N, Khoshnoudi-Nia S, Jafari SM (2020) Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res Int 132:109077

    Article  CAS  PubMed  Google Scholar 

  42. Nabila N, Suada NK, Denis D, Yohan B, Adi AC, Veterini AS, Anindya AL, Sasmono RT, Rachmawati H (2020) Antiviral action of curcumin encapsulated in nanoemulsion against four serotypes of dengue virus. Pharm Nanotechnol 8:54–62

    Article  CAS  PubMed  Google Scholar 

  43. Sreekanth T, Nagajyothi P, Muthuraman P, Enkhtaivan G, Vattikuti S, Tettey C, Kim DH, Shim J, Yoo K (2018) Ultra-sonicationassisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol B Biol 188:6–11

    Article  CAS  Google Scholar 

  44. Tiralongo E, Wee SS, Lea RA (2016) Elderberry supplementation reduces cold duration and symptoms in air-Travellers: a randomized, double-blind placebo-controlled clinical trial. Nutrients 8:182

    Article  PubMed  PubMed Central  Google Scholar 

  45. Argenta DF, Bidone J, Koester LS, Bassani VL, Simões CMO, Teixeira HF (2018) Topical delivery of Coumestrol from lipid nanoemulsions thickened with Hydroxyethylcellulose for Antiherpes treatment. AAPS Pharm Sci Tech 19:192–200

    Article  CAS  Google Scholar 

  46. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res 10:1–14

    Article  Google Scholar 

  47. Kerdudo A, Dingas A, Fernandez X, Faure C (2014) Encapsulation of rutin and naringenin in multilamellar vesicles for optimum antioxidant activity. Food Chem 159:12–19

    Article  CAS  PubMed  Google Scholar 

  48. Ripoli M, Angelico R, Sacco P, Ceglie A, Mangia A (2016) Phytoliposome-based Silibinin delivery system as a promising strategy to prevent hepatitis C virus infection. J Biomed Nanotechnol 12:770–780

    Article  CAS  PubMed  Google Scholar 

  49. Semwal DK, Semwal RB, Combrinck S, Viljoen A (2016) Myricetin: a dietary molecule with diverse biological activities. Nutrients 8:90

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ali F, Rahul NF, Jyoti S, Siddique YH (2017) Health functionality of apigenin: a review. Int J Food Prop 20:1197–1238

    Article  CAS  Google Scholar 

  51. Xu J, Xu Z, Zheng W (2017) A review of the antiviral role of green tea Catechins. Molecules 22:1337

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wu W, Li R, Li X, He J (2020) Antiviral effect of quercetin on viruses. J Immunol Res 1–9

    Google Scholar 

  53. Song JM, Lee KH, Seong BL (2005) Antiviral effect of catechins in green tea on influenza virus. Antivir Res 68(2):66–74

    Article  CAS  PubMed  Google Scholar 

  54. Lin CW, Wu CF, Hsiao NW, Chang CY, Li SW (2014) Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Antivir Ther 19(7):697–703

    Google Scholar 

  55. Qiu Y, Wang Z, Owens RJ (2016) Antiviral activity of chrysin derivatives against herpes simplex virus type 1. Antivir Chem Chemother 25(3):81–88

    Google Scholar 

  56. Elbe A, Buckland-Merrett G (2017) Data, disease and diplomacy: GISAID's innovative contribution to global health. Global Chall 1(1):33–46

    Article  Google Scholar 

  57. Cushnie TPT, Lamb AJ (2011) Antimicrobial activity of flavonoids. IJAA 38(2):99–107

    CAS  Google Scholar 

  58. Ghosh S, Basak P (2013) Emerging concepts of plant-derived antivirals against HIV, dengue virus, and hepatitis-C virus. Front Microbiol 4:1–11

    Google Scholar 

  59. Chinthakindi PK, Khan SI, Tekwani BL (2018) Phytochemical diversity and pharmacological activities of plant species in genus corydalis. J Ethnopharmacol 221:205–226

    Google Scholar 

  60. Lin LT, Hsu WC, Lin CC (2014) Antiviral natural products and herbal medicines. JTCM 4(1):24–35

    PubMed  PubMed Central  Google Scholar 

  61. Zandi K, Ramedani E, Mohammadi K, Tajbakhsh S, Deilami I, Rastian Z (2011) Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Nat Prod Commun 6(6):867–870

    Google Scholar 

  62. Haque A, Barman N, Ali ME, Saha A, Islam MA (2019) Antiviral activity of Catharanthus roseus against some human pathogenic viruses. Pharmacogn Mag 15(63):507–511

    Google Scholar 

  63. Henss L, Scholz T, Rittinghausen S, Schädler S (2018) Antiviral effects of quinine sulfate on influenza a virus-infected green monkey kidney cells. Biochem Pharmacol 150:96–108

    Google Scholar 

  64. Cheung RCF, Ng TB, Wong JH, Chan WY (2015) Marine natural products with anti-herpes activity. Mar Drugs 13(6):4006–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. P Singh T, M Singh O, B Singh H (2011) Adhatoda vasica Nees: phytochemical and pharmacological profile. Nat Prod J 1(1): 29–39

    Google Scholar 

  66. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S (2021) Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: an in silico perspective. J Mol Struct 1229:129489

    Article  CAS  PubMed  Google Scholar 

  67. Matić S, Stanić S, Mihailović M, Bogojević D (2016) Cotinus coggygria Scop.: an overview of its chemical constituents, pharmacological and toxicological potential. Saudi J Biol Sci 23(4):452–461

    Article  PubMed  Google Scholar 

  68. Chaudhary K, Aggarwal B, Singla RK (2012) Ichnocarpus frutescens: a medicinal plant with broad spectrum. Indo Glob J Pharm Sci 2:63–69

    Article  CAS  Google Scholar 

  69. Mshvildadze V, Kunert O, Dekanosidze G, Kemertelidze E, Haslinger E (2005) Arjunolic acid derivative glycoside from the stems of Hedera colchica. Chem Nat Comp 41(1):48–51

    Article  CAS  Google Scholar 

  70. Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK (2021) Phytochemistry and pharmacological activity of the genus artemisia. Arch Pharm Res 9:1–36

    Google Scholar 

  71. Ahuja J, Suresh J, Paramakrishnan N, Mruthunjaya K, Naganandhini MN (2011) An ethnomedical, phytochemical and pharmacological profile of Artemisia parviflora Roxb. J Essent Oil-Bear Plants 14:647–657

    Article  CAS  Google Scholar 

  72. Jaglan D, Brar AS, Gill R (2013) Pharmacological activity and chemical constituents of Eclipta alba. Glob J Med Drug Discov Toxicol Med 13:35–40

    Google Scholar 

  73. Tripathi B, Bhatia R, Walia S, Kumar B (2012) Chemical composition and evaluation of tagetes erecta (var. Pusa narangi genda) essential oil for its antioxidant and antimicrobial activity. Biopestic Int 8(2):138–146

    Google Scholar 

  74. Gupta RK, Tandon N, Sharma PL (2008) Comparative evaluation of antiviral activities of different species of Berberis L. using molecular techniques. J Ethnopharmacol 117(2):337–344

    Google Scholar 

  75. Ali H, Uddin S, Jalal S (2015) Chemistry and biological activities of Berberis lycium Royle. J Biol Act Prod 5:295–312

    CAS  Google Scholar 

  76. Deshmukh SV, Ghanawat NA (2019) Phytochemical studies, FTIR and GC-MS analysis of Hardwickia binata Roxb. (Fabaceae/Caesalpiniaceae). IJPSR

    Google Scholar 

  77. Ndukwu BC, Umeokoli BO, Onwuchekwa CI (2019) A review on the botany, phytochemistry, pharmacology, and ethnomedicinal uses of Tamarindus indica L. Sci World J

    Google Scholar 

  78. Riaz M, Khan O, Sherkheli MA, Khan MQ, Rashid R (2017) Chemical constituents of Terminalia chebula. Nat Prod Ind J 13(2):112

    CAS  Google Scholar 

  79. Pandey BL, Pandey V, Mishra AK (2017) Terminalia chebula – a pharmacological review. J Ethnopharmacol 1(3):82–85

    Google Scholar 

  80. Dhiman AK, Sharma NK (2015) Ethnobotanical and phytopharmacological potential of Cupressus species: a review. JPP 4(3):186–190

    Google Scholar 

  81. Lohani H, Gwari G, Andola HC, Bh U, Chauhan N (2012) Alpha-pinene rich volatile constituents of Cupressus torulosa D. don from Uttarakhand Himalaya. Indian J Pharm Sci 74(3):278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Khan R, Kazmi I, Afzal M, Gupta K, Rahman M (2016) Evaluation of antiviral activity of Shorea robusta resin against herpes simplex virus type-1 and 2. Pharmaceut Bio 54(9):1908–1914

    Google Scholar 

  83. Poornima B (2009) Comparative phytochemical analysis of Shorea robusta Gaertn (oleoresin) WSR to its seasonal collection. Anc Sci Life 29(1):26

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mahajan N, Rawat DS, Kori ML, Kumar A (2019) In vitro antiviral activity of Ricinus communis (L.): phytochemical analysis and its effects on HSV-1 early infection. Nat Prod Res 33(8):1246–1250

    Google Scholar 

  85. Ram S, Geetanjali M (2015) Phytochemical and pharmacological investigations of Ricinus communis Linn. AJNP 3(1):120–129

    Google Scholar 

  86. Saeed S, Tariq P, Sadia S (2019) A comprehensive review on phytochemistry, ethnopharmacological attributes and pharmacological profile of Cinnamomum species. Arab J Chem 12(8):5135–5158

    Google Scholar 

  87. Espineli DL, Agoo EMG, Shen CC, Ragasa CY (2013) Chemical constituents of Cinnamomum iners. Chem Nat Compd 49:932–933

    Article  CAS  Google Scholar 

  88. Krishnakumar N, Manoharan S, Palani P, Venkateshan J, Thanislass J, Shetty AK (2014) Antiviral activity of Tinospora cordifolia ethanol extract against hepatitis C virus genotype-4 infected human hepatocellular carcinoma cell line. J Ethnopharmacol 151(2):783–790

    Google Scholar 

  89. Sharma P, Dwivedee BP, Bisht D, Dash AK, Kumar D (2019) The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon 5(9):02437

    Article  Google Scholar 

  90. Fahey JW (2005) Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees for Life Journal 1(5):1–15

    Google Scholar 

  91. Ndhlala AR, Amoo SO, Stafford GI, Finnie JF, Van Staden J (2011) Antiviral activity from South African medicinal plants against the replication of herpes simplex virus type 1 (HSV-1). J Ethnopharmacol 137(1):313–319

    Google Scholar 

  92. Aja PM, Nwachukwu N, Ibiam UA, Igwenyi IO, Offor CE, Orji UO (2014) Chemical constituents of Moringa oleifera leaves and seeds from Abakaliki, Nigeria. AJPCT 2:310–321

    Google Scholar 

  93. Suriya J, Saenjum C, Chaiseri S (2018) Antimicrobial activity of rose apple (Syzygium samarangense (Blume) Merr. & L. M. Perry) fruit extracts against foodborne pathogens. Int J food Sci 5:1–7

    Google Scholar 

  94. Ragasa CY, Franco FC Jr, Raga DD, Shen CC (2014) Chemical constituents of Syzygium samarangense. Der Pharma Chemica 6(3):256–260

    Google Scholar 

  95. Iqbal A, Naim A, Azmi L, Sajid M (2018) Argemone mexicana Linn: a review on morphology, phytochemistry, pharmacology, and toxicology. Asian Pac J Trop Med 11(5):273–278

    Google Scholar 

  96. Brahmachari G, Gorai D, Roy R (2013) Argemone mexicana: chemical and pharmacological aspects. Rev bras Farmacogn 23:559–567

    Article  CAS  Google Scholar 

  97. Santoyo S, Cavero S, Jaime L, Ibañez E, Señorans FJ, Reglero G (2005) Chemical composition and antimicrobial activity of essential oils and extracts of wild medicinal plants from northern Peru. Pharmaceut Bio 43(1):68–77

    Google Scholar 

  98. García-Ruiz A, Girones-Vilaplana A, León P, Moreno DA, Stinco CM, Meléndez-Martínez AJ, Ruales J (2017) Banana passion fruit (Passiflora mollissima (Kunth) LH bailey): microencapsulation, phytochemical composition and antioxidant capacity. Molecules 22(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ohtani Y, Nakano Y, Ishida A, Nakatsubo F (2017) Cryptomeria japonica (Japanese cedar) pollen: a potential springtime aeroallergen source. J Investig Allergol Clin Immunol 27(3):177–185

    Google Scholar 

  100. Satyal P, Setzer WN (2015) Chemical composition of Cryptomeria japonica leaf oil from Nepal. Am J Essent Oils Nat Prod 3:7–10

    Google Scholar 

  101. Jaiswal N, Tripathi A, Chaturvedi A (2012) Cynodon dactylon extract exhibits antiviral activity against herpes simplex virus type 1. Asian Pac J Trop Biomed 2(2):728–731

    Google Scholar 

  102. Al-Snafi AE (2016) Chemical constituents and pharmacological effects of Cynodon dactylon- a review. IOSR J Pharm 6:17–31

    Google Scholar 

  103. Mina A, Farooq U, Sheraz S, Raza MA, Bukhari IH, Ahmad S, Ashraf MA (2020) Bioassay-guided isolation of antiviral compounds from Polygonum glabrum L. with potential activity against herpes simplex virus type 1 (HSV-1). Nat Prod Res 34(4):453–457

    Google Scholar 

  104. Raja S, Ramya I (2017) A comprehensive review on Polygonum glabrum. IJOP 8:457–467

    Google Scholar 

  105. Wang C, Luo Q, Shen H, Wang Y, Zhang Y, ** Y, Zhang L (2019) Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J Ethnopharmacol 232:166–175

    Google Scholar 

  106. Song JL, Yang YJ, Qi HY, Li Q (2013) Chemical constituents from flowers of Gardenia jasminoides. Zhong yao cai Zhongyaocai. J Chin med mater 36(5):752–755

    CAS  Google Scholar 

  107. Owais M, Sharad KS, Shehbaz A, Saleemuddin M (2005) Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12(3):229–235

    Article  CAS  PubMed  Google Scholar 

  108. Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SN (2020) Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran. J Basic Med Sci 23(12):1501

    PubMed  PubMed Central  Google Scholar 

  109. Joshi BC, Mukhija M, Kalia AN (2014) Pharmacognostical review of Urtica dioica L. Int J Green Pharm 8(4):201–209

    Article  CAS  Google Scholar 

  110. Bhat SS, Ravishankar Rai V, Ganesh Pai S (2014) Vitex diversifolia: a comprehensive review on its ethnobotany, phytochemistry, and pharmacological activities. Pharm Rev 8(16):86–93

    Google Scholar 

  111. Ch Nébié RH, Yaméogo RT, Bélanger A, Sib FS (2005) Chemical composition of essential oils of Vitex diversifolia Bak. From Burkina Faso. J Essent Oil-Bear Plan Theory 17:276–277

    Google Scholar 

  112. Ayati Z, Ramezani M, Amiri MS, Moghadam AT, Rahimi H, Abdollahzade A, Sahebkar A, Emami SA (2019) Ethnobotany, phytochemistry and traditional uses of curcuma spp. and pharmacological profile of two important species (C. longa and C. zedoaria): a review. Curr Pharm Des 25(8):871–935

    Article  CAS  PubMed  Google Scholar 

  113. Tayyem RF, Heath DD, Al-Delaimy WK, Rock CL (2006) Curcumin content of turmeric and curry powders. Nutr Cancer 55:126–131

    Article  CAS  PubMed  Google Scholar 

  114. Baliga MS, Jimmy R, Thilakchand KR, Sunitha V, Bhat NR, Saldanha E, Rao S, Rao P, Arora R, Palatty PL (2013) Ocimum sanctum L (holy basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer 1:26–35

    Article  Google Scholar 

  115. Li W, Ding S, Jiang H (2013) Screening strategies for discovery of anti-infective natural products from plant extracts. CCHTS 16(7):480–491

    Google Scholar 

  116. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen C, Zuckerman DM (2018) Longevity of plant-based small molecule drugs. Curr Top Med Chem 18(27):2309–2322

    Google Scholar 

  118. Li X, Lin L, Li H, Zhao M (2020) Combining plant extracts with conventional antiviral drugs for emerging viral infections: a strategy to combat COVID-19. Front Pharmacol 11:1066

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pal, D., Lal, P. (2023). Plants Showing Antiviral Activity with Emphasis on Secondary Metabolites and Biological Screening. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83350-3_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83350-3_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83350-3

  • Online ISBN: 978-3-030-83350-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation