Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 35))

  • 1051 Accesses

Abstract

Earth based building materials having low or negligible carbon footprint are looked upon as a sustainable alternative building material in the construction sector. The confidence of using any building material is augmented with through understanding of its mechanical properties. A brief review on the mechanical properties of the building materials such as Rammed Earth, Earth Blocks (Adobe, Compressed Earth Block, and Extruded Blocks) and Cob, which are manufactured using raw earth or by adding very little additives are presented in this chapter. The mechanical behaviour of earth based building material is highly dependent on raw material, manufacturing technique and testing conditions. Therefore it is highly recommended to conduct through experimental campaign for every soil mix. This chapter also presents various experiments recommended to study the mechanical properties of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ASTM E 519/E519M-15 (2015) Standard test method for diagonal tension (shear) in masonry assemblages. ASTM International, West Conshohocken, PA

    Google Scholar 

  2. ASTM C78/C78M-18 (2018) Standard test method for flexural strength of concrete (using simple beam with third-point loading). ASTM International, West Conshohocken, PA

    Google Scholar 

  3. ASTM D3080/D3080M-11 (2011) D3080/D3080M-11. Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken, PA

    Google Scholar 

  4. ASTM D4767-11 (2011) Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM International, West Conshohocken, PA,

    Google Scholar 

  5. Abhilash HN, Morel J-C, Champiré F, Fabbri A (2019) A novel experimental study to investigate the interface properties of rammed earth. Proc Inst Civ Eng—Constr Mater. https://doi.org/10.1680/jcoma.18.00095

    Article  Google Scholar 

  6. Abhilash HN, Morel J-C (2019) Stress–strain characteristics of unstabilised rammed earth. In: Reddy BVV, Mani M, Walker P (eds) Earthen dwellings and structures: current status in their adoption. Springer Singapore, Bangalore, India, pp 203–214

    Google Scholar 

  7. Achenza M, Fenu L (2007) On earth stabilization with natural polymers for earth masonry construction. Mater Struct 39:21–27. https://doi.org/10.1617/s11527-005-9000-0

    Article  Google Scholar 

  8. Addison Greer MJ (1996) The effect of moisture content and composition on the compressive strength and rigidity of cob made from soil of the Breccia Measures near Teignmouth, Devon, PhD., Plymouth School of Architecture

    Google Scholar 

  9. Al Rim K, Ledhem A, Douzane O et al (1999) Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites. Cem Concr Compos 21:269–276. https://doi.org/10.1016/S0958-9465(99)00008-6

  10. Araki H, Koseki J, Sato T (2011) Mechanical properties of geo-materials used for constructing earthen walls in Japan. Builletin ERS, Inst Ind Sci Univ Tokyo, pp 101–112

    Google Scholar 

  11. Aubert JE, Fabbri a., Morel JC, Maillard P (2013) An earth block with a compressive strength higher than 45MPa! Constr Build Mater 47:366–369.https://doi.org/10.1016/j.conbuildmat.2013.05.068

  12. Aubert JE, Maillard P, Morel JC, Al Rafii M (2015) Towards a simple compressive strength test for earth bricks ? Mater Struct 49:1641–1654. https://doi.org/10.13140/RG.2.1.4641.4242

  13. BS 1377-7:1990 (1990) Soils for civil engineering purposes—Part 7: Shear strength tests (total stress). British Standards Institution

    Google Scholar 

  14. BS EN 1998-1:2004+A1:2013 (2013) Eurocode 8: design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings. British Standards Institution

    Google Scholar 

  15. BS EN 772-1:2011+A1:2015 (2015) Methods of test for masonry units Part 1 : Determination of compressive strength

    Google Scholar 

  16. BS EN ISO 17892-9:2018 (2018) Geotechnical investigation and testing—Latoratory testing of soil Part 9 : Consolidated triaxial compression tests on water saturated soils. British Standards Institution

    Google Scholar 

  17. Baglioni E, Fratini F, Rovero L (2010) The materials utilised in the earthen buildings sited in Thedrâa Valley (Morocco ): mineralogical and mechanicalcharacteristics. In: 6th seminar of earthen architecture in Portugal and 9th Ibero-American seminar on earthen architecture and construction, Coimbra, Portugal

    Google Scholar 

  18. Beckett CTS, Augarde CE, Easton D, Easton T (2017) Strength characterisation of soil-based construction materials. Géotechnique 68:400–409. https://doi.org/10.1680/jgeot.16.P.288

    Article  Google Scholar 

  19. Bouguerra A, Ledhem A, de Barquin F et al (1998) Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregates. Cem Concr Res 28:1179–1190. https://doi.org/10.1016/S0008-8846(98)00075-1

  20. Bui Q, Morel J, Hans S, Walker P (2014) Effect of moisture content on the mechanical characteristics of rammed earth. Constr Build Mater 54:163–169

    Article  Google Scholar 

  21. Bui Q-B (2008) Stabilité des structures en pisé : durabilité, caractéristiques mécaniques. Institut National des Sciences Appliquées de Lyon

    Google Scholar 

  22. Champiré F, Fabbri A, Morel J et al (2016) Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Constr Build Mater 110:70–78. https://doi.org/10.1016/j.conbuildmat.2016.01.027

    Article  Google Scholar 

  23. Cheah JSJ, Walker P, Heath A, Morgan TKKB (2012) Evaluating shear test methods for stabilised rammed earth. Proc Inst Civ Eng Constr Mater 165:325–334. https://doi.org/10.1680/coma.10.00061

    Article  Google Scholar 

  24. Ciancio D, Jaquin P, Walker P (2013) Advances on the assessment of soil suitability for rammed earth. Constr Build Mater 42:40–47. https://doi.org/10.1016/j.conbuildmat.2012.12.049

    Article  Google Scholar 

  25. Collet F, Bart M, Serres L, Miriel J (2010) Porous structure and hydric properties of cob. J Porous Media 13:111–124

    Article  Google Scholar 

  26. Corbin A, Augarde C (2015) Investigation into the shear behaviour of rammed earth using shear box tests. In: Amziane S, Sonebi M, Charlet K (eds) First International conference on bio-based building materials. RILEM Proceedings, Clemont-Ferrand, France, France, pp 93–98

    Google Scholar 

  27. Coventry KA (2004) Specification development for the use of Devon cob in earthen construction, Ph.D., University of Plymouth—Faculty of Science

    Google Scholar 

  28. Demir I (2006) An investigation on the production of construction brick with processed waste tea. Build Environ 41:1274–1278. https://doi.org/10.1016/j.buildenv.2005.05.004

  29. Dołżyk-Szypcio K (2019) Direct shear test for coarse granular soil. Int J Civ Eng 17:1871–1878. https://doi.org/10.1007/s40999-019-00417-2

    Article  Google Scholar 

  30. El-Nabouch R, Bui QB, Plé O, Perrotin P (2018) Characterizing the shear parameters of rammed earth material by using a full-scale direct shear box. Constr Build Mater 171:414–420. https://doi.org/10.1016/j.conbuildmat.2018.03.142

    Article  Google Scholar 

  31. El-Nabouch R, Bui Q-B, Perrotin P, Plé O (2017) Experimental and numerical studies on cohesion and friction angle of rammed earth material. In: Poromechanics 2017—proceedings of the 6th biot conference on poromechanics. ASCE, Paris, France

    Google Scholar 

  32. Eslami A, Ronagh HR, Mahini SS, Morshed R (2012) Experimental investigation and nonlinear FE analysis of historical masonry buildings—a case study. Constr Build Mater 35:251–260. https://doi.org/10.1016/j.conbuildmat.2012.04.002

  33. Fabbri A, Morel JC (2016) Earthen materials and constructions. In: Harries KA, Sharma B (eds) Nonconventional and vernacular construction materials. Elsevier, Duxford (UK), pp 273–299

    Chapter  Google Scholar 

  34. François B, Palazon L, Gerard P (2017) Structural behaviour of unstabilized rammed earth constructions submitted to hygroscopic conditions. Constr Build Mater 155:164–175. https://doi.org/10.1016/j.conbuildmat.2017.08.012

    Article  Google Scholar 

  35. Fratini F, Pecchioni E, Rovero L, Tonietti U (2011) The earth in the architecture of the historical centre of Lamezia Terme (Italy): characterization for restoration. Appl Clay Sci 53:509–516. https://doi.org/10.1016/j.clay.2010.11.007

  36. Gallipoli D, Bruno A., Perlot C, Salmon N (2014) Raw earth construction: Is there a role for unsaturated soil mechanics? In: Khalili N, Russel A, Khoshghalb A (eds) Unsaturated soils: research & applications. Taylor & Francis Group, London, UK, pp 55–62

    Google Scholar 

  37. Gavrilovic P, Sendova V, Ginell WS, et al (1998) Behaviour of adobe structures during shaking table tests and earthquakes. In: European conference on earthquake engineering. A A Balkema, p 172

    Google Scholar 

  38. Gerard P, Mahdad M, Robert McCormack A, François B (2015) A unified failure criterion for unstabilized rammed earth materials upon varying relative humidity conditions. Constr Build Mater 95:437–447. https://doi.org/10.1016/j.conbuildmat.2015.07.100

    Article  Google Scholar 

  39. Gomes MI, Gonçalves TD, Faria P (2014) Unstabilized rammed earth: characterization of material collected from old constructions in South Portugal and comparison to normative requirements. Int J Archit Herit 8:185–212. https://doi.org/10.1080/15583058.2012.683133

    Article  Google Scholar 

  40. Gooding DEM (1994) Improved processes for the production of soil-cement building blocks. University of Warwick

    Google Scholar 

  41. Hall M, Djerbib Y (2004) Rammed earth sample production: context, recommendations and consistency. Constr Build Mater 18:281–286. https://doi.org/10.1016/j.conbuildmat.2003.11.001

    Article  Google Scholar 

  42. Hamard E, Cazacliu B, Razakamanantsoa A, Morel J-C (2016) Cob, a vernacular earth construction process in the context of modern sustainable building. Build Environ 106:103–119. https://doi.org/10.1016/j.buildenv.2016.06.009

  43. Harries R, Saxton B, Coventry K (1995) The geological and geotechnical properties of earth material from central Devon in relation to its suitability for building in “Cob”. In: Geoscience in South-West England. pp 441–444

    Google Scholar 

  44. Illampas R, Ioannou I, Charmpis DC (2016) Experimental assessment of adobe masonry assemblages under monotonic and loading–unloading compression. Mater Struct 50:79. https://doi.org/10.1617/s11527-016-0952-z

    Article  Google Scholar 

  45. Illampas R (2014) Experimental and computational investigation of the structural response of adobe structures. University of Cyprus

    Google Scholar 

  46. Illampas R, Ioannou I, Charmpis DC (2014) Adobe bricks under compression: Experimental investigation and derivation of stress–strain equation. Constr Build Mater 53:83–90. https://doi.org/10.1016/j.conbuildmat.2013.11.103

  47. Illampas R, Loizou Vasilios G, Ioannou I (2020) Effect of straw fiber reinforcement on the mechanical properties of adobe bricks. Poromechanics VI:1331–1338

    Google Scholar 

  48. Jaquin PA, Augarde CE, Gallipoli D, Toll DG (2009) The strength of unstabilised rammed earth materials. Géotechnique 59:487–490. https://doi.org/10.1680/geot.2007.00129

    Article  Google Scholar 

  49. Jaquin PA, Augarde CE, Gerrard CM (2008) Chronological description of the spatial development of rammed Earth techniques. Int J Archit Herit 2:377–400. https://doi.org/10.1080/15583050801958826

    Article  Google Scholar 

  50. Jiménez Delgado MC, Guerrero IC (2007) The selection of soils for unstabilised earth building: a normative review. Constr Build Mater 21:237–251. https://doi.org/10.1016/j.conbuildmat.2005.08.006

    Article  Google Scholar 

  51. Keefe L (1993) The cob building of Devon 2—repair and maintenance

    Google Scholar 

  52. Keefe L (2005) Earth building: methods and materials, repair and conservation. Routledge

    Google Scholar 

  53. Ledhem A, Dheilly RM, Benmalek ML, Quéneudec M (2000) Properties of wood-based composites formulated with aggregate industry waste. Constr Build Mater 14:341–350. https://doi.org/10.1016/S0950-0618(00)00037-4

  54. Liberatore D, Giuseppe S, Mucciarelli M, et al (2006) Typological and experimental investigation on the adobe buildings of Aliano (Basilicata, Italy). In: Lourenço PB, Roca P, Modena C, Agrawal S (eds) Structural analysis of historical constructions. New Delhi, pp 851–858

    Google Scholar 

  55. Liu K, Wang M, Wang Y (2015) Seismic retrofitting of rural rammed earth buildings using externally bonded fibers. Constr Build Mater 100:91–101. https://doi.org/10.1016/j.conbuildmat.2015.09.048

    Article  Google Scholar 

  56. Maniatidis V, Walker P (2003) A review of rammed earth construction

    Google Scholar 

  57. Maskell D, Heath A, Walker P (2013) Laboratory scale testing of extruded earth masonry units. J Mater Des 45:359–364. https://doi.org/10.1016/j.matdes.2012.09.008

    Article  Google Scholar 

  58. McGregor F, Heath A, Maskell D et al (2016) A review on the buffering capacity of earth building materials. Proc Inst Civ Eng—Constr Materhttps://doi.org/10.1680/jcoma.15.00035

  59. Meli R (2005) Experiencias en México sobre reducción de vulnerabilidad sísmica de construcciones de adobe. In: SismoAdobe2005: International seminar on architecture, construction and conservation of earthen buildings in seismic areas, Lima, Peru

    Google Scholar 

  60. Miccoli L, Drougkas A, Müller U (2016) In-plane behaviour of rammed earth under cyclic loading: experimental testing and finite element modelling. Eng Struct 125:144–152. https://doi.org/10.1016/j.engstruct.2016.07.010

    Article  Google Scholar 

  61. Miccoli L, Müller U, Fontana P (2014) Mechanical behaviour of earthen materials: a comparison between earth block masonry, rammed earth and cob. Constr Build Mater 61:327–339. https://doi.org/10.1016/j.conbuildmat.2014.03.009

    Article  Google Scholar 

  62. Miccoli L, Oliveira DV, Silva RA et al (2015) Static behaviour of rammed earth : experimental testing and finite element modelling. Mater Struct 48:3443–3456. https://doi.org/10.1617/s11527-014-0411-7

    Article  Google Scholar 

  63. Morel J-C, Pkla A (2002) A model to measure compressive strength of compressed earth blocks with the ‘ 3 points bending test.’ Constr Build Mater 16:303–310

    Article  Google Scholar 

  64. Morel J, Pkla A, Walker P (2007) Compressive strength testing of compressed earth blocks. Constr Build Mater 21:303–309. https://doi.org/10.1016/j.conbuildmat.2005.08.021

    Article  Google Scholar 

  65. Morris W (1992) The cob building of Devon 1—history, building methods and conservation. Historic Building Trust, London (UK)

    Google Scholar 

  66. NZS-4297 (1998) Engineering design of earth buildings. Standard New Zealand

    Google Scholar 

  67. Nabouch R, Bui QB, Plé O et al (2016) Seismic assessment of rammed earth walls using pushover tests. Procedia Eng 145:1185–1192. https://doi.org/10.1016/j.proeng.2016.04.153

    Article  Google Scholar 

  68. Norma E.080 (2017) Diseño y construcción con tierra reforzada, Ministerio de Vivienda, Construcción y Saneamiento (MVCS), Lima

    Google Scholar 

  69. Obonyo E, Exelbirt J, Baskaran M (2010) Durability of compressed earth bricks: assessing erosion resistance using the modified spray testing. Sustainability 2

    Google Scholar 

  70. PCDS (2012) Standard for earthen IRC structures, Pima County Development Services (PCDS), Tucson

    Google Scholar 

  71. Pavan GS, Ullas SN, Nanjunda Rao KS (2020) Shear behavior of cement stabilized rammed earth assemblages. J Build Eng 27:100966. https://doi.org/10.1016/j.jobe.2019.100966

    Article  Google Scholar 

  72. Pullen QM, Scholz TV (2011) Index and engineering properties of Oregon cob. J Green Build 6:88–106. https://doi.org/10.3992/jgb.6.2.88

    Article  Google Scholar 

  73. Quagliarini E, Lenci S (2010) The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks. J Cult Herit 11:309–314. https://doi.org/10.1016/j.culher.2009.11.012

    Article  Google Scholar 

  74. Quagliarini E, Stazi A, Pasqualini E, Fratalocchi E (2010) Cob construction in Italy: some lessons from the past. Sustainability 2:3291–3308. https://doi.org/10.3390/su2103291

    Article  Google Scholar 

  75. RLD (2015) New Mexico earthen building materials code.” New Mexico Administrative Code, Construction Industries Division of the Regulation and Licensing Department (RLD), New Mexico

    Google Scholar 

  76. Raju L, Venkatarama Reddy BV (2018) Influence of layer thickness and plasticizers on the characteristics of cement-stabilized rammed earth. J Mater Civ Eng 30:04018314. https://doi.org/10.1061/(asce)mt.1943-5533.0002539

    Article  Google Scholar 

  77. Reddy BVV, Lal R, Rao KSN (2007) Enhancing bond strength and characteristics of soil-cement block masonry. J Mater Civ Eng 19:164–172

    Article  Google Scholar 

  78. Rivera Torres JC, Muñoz Díaz EE (2005) Caracterización estructural de materiales de sistemas constructivos en tierra : El adobe / Structural characterization of materials used in construction systems with soil material : The adobe. Rev Int Desastr Nat Accid e Infraestruct Civ 5:135–148

    Google Scholar 

  79. Rodríguez-Mariscal JD, Solís M, Cifuentes H (2018) Methodological issues for the mechanical characterization of unfired earth bricks. Constr Build Mater 175:804–814. https://doi.org/10.1016/j.conbuildmat.2018.04.118

    Article  Google Scholar 

  80. Rojat F, Hamard E, Fabbri A, Carnus B, McGregor F (2020) Towards an easy decision tool to assess soil suitability for earth building. Constr Build Mater 257. https://doi.org/10.1016/j.conbuildmat.2020.119544

  81. Röhlen U, Ziegert C (2013) Construire en terre crue - Construction - Rénovation - Finition. Le Moniteur, Paris

    Google Scholar 

  82. SNZ (1998) NZS 4298:1998 Materials and workmanship for earth buildings. Standards New Zealand (SNZ), Wellington

    Google Scholar 

  83. San Bartolomé A, Pehovaz R (2005) Comportamiento a carga lateral cíclica de muros de adobe confinados. In: Ponencias del XV Congreso Nacional de Ingeniería Civil, Colegio de Ingenieros del Perú, Ayacucho, Peru (in Spanish), pp 209–214

    Google Scholar 

  84. Sarangapani G, Reddy BVV, Jagadish KS (2005) Brick-mortar bond and masonry compressive strength. J Mater Civ Eng 17:229–237. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(229)

    Article  Google Scholar 

  85. Sauvage M (2009) Les débuts de l’architecture de terre au Proche-Orient. In: Achenza M, Correia M, Guillaud H (eds) Mediterra 2009, 1st Mediterranean conference on earth architecture. EdicomEdizioni, Cagliari (Italy), pp 189–198

    Google Scholar 

  86. Saxton R (1995) The performance of cob as a building material. Struct Eng 73:111–115

    Google Scholar 

  87. Silva RA, Oliveira D V, Miccoli L, Schueremans L (2014a) Modelling of rammed earth under shear loading. In: Peña F, Chávez M (eds) SAHC2014–9th international conference on structural analysis of historical constructions. Mexico City, Mexico

    Google Scholar 

  88. Silva RA, Oliveira D V, Miranda T et al (2013) Rammed earth construction with granitic residual soils: the case study of northern Portugal. Constr Build Mater 47:181–191. https://doi.org/10.1016/j.conbuildmat.2013.05.047

  89. Silva RA, Olliveira DV, Schueremans L et al (2014b) Shear behaviour of rammed earth walls repaired by means of grouting. In: 9th international masonry conference. International Masonry Society, Guimaraes, Portugal

    Google Scholar 

  90. Silveira D, Varum H, Costa A et al (2012) Mechanical properties of adobe bricks in ancient constructions. Constr Build Mater 28:36–44. https://doi.org/10.1016/j.conbuildmat.2011.08.046

    Article  Google Scholar 

  91. Silveira D, Varum H, Costa A (2013) Influence of the testing procedures in the mechanical characterization of adobe bricks. Constr Build Mater 40:719–728. https://doi.org/10.1016/j.conbuildmat.2012.11.058

    Article  Google Scholar 

  92. Silveira D, Varum H, Costa A, Carvalho J (2015) Mechanical properties and behavior of traditional adobe wall panels of the Aveiro District. J Mater Civ Eng 27:4014253. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001194

    Article  Google Scholar 

  93. Soudani L, Fabbri A, Morel J claude, et al (2015) A coupled hygrothermal model for earthen materials. Energy Build

    Google Scholar 

  94. Torrealva D, Acero J (2005) Reinforcing adobe buildings with exterior compatible Mesh: the final solution against the seismic vulnerability? SismoAdobe. Lima, Peru

    Google Scholar 

  95. Vinceslas T, Hamard E, Razakamanantsoa A, Bendahmane F (2018) Further development of a laboratory procedure to assess the mechanical performance of cob. Environ Geotech 0:1–8.https://doi.org/10.1680/jenge.17.00056

  96. Walker P (2002) The Australian earth building handbook, HB 195–2002. Australia, Sydney

    Google Scholar 

  97. Wu F, Li G, Li H-N, Jia JQ (2013) Strength and stress-strain characteristics of traditional adobe block and masonry. Mater Struct 46(9):1449–1457

    Google Scholar 

  98. Xu L, Wong KK, Fabbri A et al (2018) Loading-unloading shear behavior of rammed earth upon varying clay content and relative humidity conditions. Soils Found 58:1001–1015. https://doi.org/10.1016/j.sandf.2018.05.005

    Article  Google Scholar 

  99. Ziegert C (2008) Lehmwellerbau - Konstruktion, Schäden und Sanierung. Technical University of Berlin, Berichte aus dem Konstruktiven Ingenieurbau

    Google Scholar 

  100. Ziegert C (2006) Historical cob buildings in Germany—construction, damage and repairs. In: Patte E, Streiff F (eds) L’architecture en Bauge en Europe. Parc Naturel Régional des marais du Cotentin et du Bessin, Isigny-sur-Mer, pp 233–246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Morel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abhilash, H.N. et al. (2022). Mechanical Behaviour of Earth Building Materials. In: Fabbri, A., Morel, JC., Aubert, JE., Bui, QB., Gallipoli, D., Reddy, B.V. (eds) Testing and Characterisation of Earth-based Building Materials and Elements. RILEM State-of-the-Art Reports, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-83297-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83297-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83296-4

  • Online ISBN: 978-3-030-83297-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation