Abstract

Lung transplantation may be considered as a final treatment option for diseases such as chronic lung disease, pulmonary hypertension, bronchopulmonary dysplasia, pulmonary fibrosis, and end-stage lung disease. The five-year survival rate of lung transplants is nearly 50%. Unfortunately, many patients will die before a suitable lung donor can be found. Importantly, the shortage of donor organs has been a significant problem in lung transplantation. The tissue engineering approach uses de- and recellularization of lung tissue to create functional lung substitutes to overcome donor lung limitations. Decellularization is hope for generating an intact ECM in the development of the engineered lung. The goal of decellularization is to prepare a suitable scaffold of lung tissue that contains an appropriate framework for the functionality of regenerated lung tissue. In this chapter, we aim to describe the decellularization protocols for lung tissue regenerative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Androjna C et al (2008) Oxygen diffusion through natural extracellular matrices: implications for estimating “critical thickness” values in tendon tissue engineering. Tissue Eng Part A 14(4):559–569

    Article  CAS  Google Scholar 

  • Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Article  CAS  Google Scholar 

  • Balestrini JL et al (2016) Comparative biology of decellularized lung matrix: implications of species mismatch in regenerative medicine. Biomaterials 102:220–230

    Article  CAS  Google Scholar 

  • Bergman I, Loxley R (1970) The determination of hydroxyproline in urine hydrolysates. Clin Chim Acta 27(2):347–349

    Article  CAS  Google Scholar 

  • Birchall M, Macchiarini P (2008) Airway transplantation: a debate worth having? Transplantation 85(8):1075–1080

    Article  Google Scholar 

  • Bombelli S et al (2018) Nephrosphere-derived cells are induced to multilineage differentiation when cultured on human decellularized kidney scaffolds. Am J Pathol 188(1):184–195

    Article  CAS  Google Scholar 

  • Booth AJ et al (2012) Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med 186(9):866–876

    Article  CAS  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  CAS  Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    CAS  PubMed  Google Scholar 

  • Gilpin SE et al (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308

    Article  Google Scholar 

  • Gilpin SE et al (2016) Bioengineering lungs for transplantation. Thorac Cardiovasc Surg 26(2):163–171

    Google Scholar 

  • Jensen T et al (2012) A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation. Tissue Eng Part C Methods 18(8):632–646

    Article  CAS  Google Scholar 

  • Kajbafzadeh A et al (2015) Lung tissue engineering and preservation of alveolar microstructure using a novel casting method. Biotech Histochem 90(2):111–123

    Article  CAS  Google Scholar 

  • Kocyildirim E et al (2004) Long-segment tracheal stenosis: slide tracheoplasty and a multidisciplinary approach improve outcomes and reduce costs. J Thorac Cardiovasc Surg 128(6):876–882

    Article  Google Scholar 

  • Laird PW et al (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19(15):4293

    Article  CAS  Google Scholar 

  • Macchiarini P et al (2008) Clinical transplantation of a tissue-engineered airway. The Lancet 372(9655):2023–2030

    Article  Google Scholar 

  • Nakayama KH et al (2011) Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Eng Part A 17(23–24):2891–2901

    Article  CAS  Google Scholar 

  • Nichols JE, Niles JA, Cortiella J (2009) Design and development of tissue engineered lung: progress and challenges. Organogenesis 5(2):57–61

    Article  Google Scholar 

  • Nichols JE et al (2013) Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng Part A 19(17–18):2045–2062

    Article  CAS  Google Scholar 

  • Nichols JE et al (2017) Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. J Tissue Eng Regen Med 11(7):2136–2152

    Article  CAS  Google Scholar 

  • Omori K et al (2005) Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol 114(6):429–433

    Article  Google Scholar 

  • O’Neill JD et al (2013) Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 96(3):1046–1056

    Article  Google Scholar 

  • Orens JB, Garrity ER Jr (2009) General overview of lung transplantation and review of organ allocation. Proc Am Thorac Soc 6(1):13–19

    Article  Google Scholar 

  • Petersen T (2009) In vitro development of engineered lung tissue

    Google Scholar 

  • Petersen TH et al (2010) Tissue-engineered lungs for in vivo implantation. Science, p 1189345

    Google Scholar 

  • Petersen TH et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541

    Article  CAS  Google Scholar 

  • Petersen TH et al (2012) Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195(3):222–231

    Article  CAS  Google Scholar 

  • Prakash Y, Tschumperlin DJ, Stenmark KR (2015) Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 309(7):L625–L638

    Article  CAS  Google Scholar 

  • Reichenspurner H (2005) Overview of tacrolimus-based immunosuppression after heart or lung transplantation. J Heart Lung Transplant 24(2):119–130

    Article  Google Scholar 

  • Shahri NM et al (2013) In vitro decellularization of rabbit lung tissue. Cell J (yakhteh) 15(1):83

    CAS  Google Scholar 

  • Skolasinski S, Panoskaltsis-Mortari A (2017) Decellularization of intact lung tissue through vasculature and airways using negative and positive pressure. Decellularized scaffolds and organogenesis. Springer, Berlin, pp 307–315

    Chapter  Google Scholar 

  • Smith J et al (2014) Organ procurement and transplantation network (OPTN) and scientific registry of transplant recipients (SRTR). OPTN/SRTR 2012 annual data report. Am J Transplant 14(suppl 1):97–111

    Google Scholar 

  • Tebyanian H et al (2019) Rat lung decellularization using chemical detergents for lung tissue engineering. Biotech Histochem 94(3):214–222

    Article  CAS  Google Scholar 

  • Uhl FE, Wagner DE, Weiss DJ (2017) Preparation of decellularized lung matrices for cell culture and protein analysis. Fibrosis. Springer, Berlin, pp 253–283

    Chapter  Google Scholar 

  • Vertrees RA et al (2008) Cellular differentiation in three-dimensional lung cell cultures. Cancer Biol Ther 7(3):404–411

    Article  Google Scholar 

  • Wagner DE et al (2014) Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials 35(9):2664–2679

    Article  CAS  Google Scholar 

  • Wainwright D (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21(4):243–248

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdol-Mohammad Kajbafzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zolbin, M.M., Daghigh, F., Shojaie, L., Ekhtiyari, M., Kajbafzadeh, AM. (2021). Fetal Lung Tissue Engineering. In: Kajbafzadeh, AM. (eds) Decellularization Methods of Tissue and Whole Organ in Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1345. Springer, Cham. https://doi.org/10.1007/978-3-030-82735-9_3

Download citation

Publish with us

Policies and ethics

Navigation