Aerosol Composition and Reactivity

  • Chapter
  • First Online:
Atmospheric Chemistry in the Mediterranean Region

Abstract

Aerosol over the Mediterranean region is composed of a challenging mix of aerosol components from natural and anthropic sources, primary emitted or secondary formed in the atmosphere. In this chapter, we report a synthesis of the reactivity of the main aerosol components in the Mediterranean region. In particular, the reaction between Saharan dust, sea salt, ammonia, carbonaceous components with acids (and their gaseous precursor) and oxidant (e.g., ozone) are reported. The knowledge of aerosol reactivity is crucial in a climate change context environment because reactions are able to change the chemical and physical properties of aerosol particles, especially the gas/condensed phase interface. The products of the reactions usually present higher solubility than precursors, therefore altering the original particles optical property and their capability to form cloud condensation nuclei. For these reasons, studies on aerosol chemical reactivity in the Mediterranean atmosphere are highly appreciated.

Chapter reviewed by Konrad Kandler (Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, Darmstadt, Germany) and Cyrielle Denjean (Centre National de Recherches Météorologiques, Université de Toulouse, Météo France, CNRS, Toulouse France), as part of the book Part VII Mediterranean Aerosol Properties also reviewed by Jorge Pey Betrán (ARAID-Instituto Pirenaico de Ecología, CSIC, Zaragoza, Spain)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arndt, J., Sciare, J., Mallet, M., Roberts, G. C., Marchand, N., Sartelet, K., Sellegri, K., Dulac, F., Healy, R. M., & Wenger, J. C. (2017). Sources and mixing state of summertime background aerosol in the north-western Mediterranean basin. Atmospheric Chemistry and Physics, 17, 6975–7001. https://doi.org/10.5194/acp-17-6975-2017

    Article  CAS  Google Scholar 

  • Asa-Awuku, A., Sullivan, A. P., Hennigan, C. J., Weber, R. J., & Nenes, A. (2008). Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmospheric Chemistry and Physics, 8, 799–812. https://doi.org/10.5194/acp-8-799-2008

    Article  CAS  Google Scholar 

  • Astitha, M., Kallos, G., Spyrou, C., O’Hirok, W., Lelieveld, J., & Denier van der Gon, H. A. C. (2010). Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts. Atmospheric Chemistry and Physics, 10, 5797–5822. https://doi.org/10.5194/acp-10-5797-2010

    Article  CAS  Google Scholar 

  • Athanasopoulou, E., Protonotariou, A., Papangelis, G., Tombrou, M., Mihalopoulos, N., & Gerasopoulos, E. (2016). Long-range transport of Saharan dust and chemical transformations over the Eastern Mediterranean. Atmospheric Environment, 140, 592–604. https://doi.org/10.1016/j.atmosenv.2016.06.041

    Article  CAS  Google Scholar 

  • Aymoz, G., Jaffrezo, J.-L., Jacob, V., Colomb, A., & George, C. (2004). Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps. Atmospheric Chemistry and Physics, 4, 2499–2512. https://doi.org/10.5194/acp-4-2499-2004

    Article  CAS  Google Scholar 

  • Baek, B. H., Aneja, V. P., & Tong, Q. (2004). Chemical coupling between ammonia, acid gases, and fine particles. Environmental Pollution, 129, 89–98. https://doi.org/10.1016/j.envpol.2003.09.022

  • Bardouki, H., Liakakou, H., Ecobomou, C., Sciare, J., Smolik, J., Zdimal, V., Eleftheriadis, K., Lazaridis, M., Dye, C., & Mihalopolos, N. (2003). Chemical composition of size resolved aerosols in the eastern Mediterranean during summer and winter. Atmospheric Environment, 37, 195–208. https://doi.org/10.1016/S1352-2310(02)00859-2

    Article  CAS  Google Scholar 

  • Bauer, S. E., Balkanski, Y., Schulz, M., Hauglustaine, D. A., & Dentener, F. (2004a). Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations. Journal of Geophysical Research – Atmospheres, 109, D02304. https://doi.org/10.1029/2003JD003868

    Article  CAS  Google Scholar 

  • Bauer, S. E., Balkanski, Y., Schulz, M., & Hauglustaine, D. A. (2004b). Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations. Journal of Geophysical Research, 109, D02304. https://doi.org/10.1029/2005JD006977

    Article  Google Scholar 

  • Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., & Streets, D. G. (2007a). Nitrate aerosols today and in 2030: A global simulation including aerosols and tropospheric ozone. Atmospheric Chemistry and Physics, 7, 5043–5059. https://doi.org/10.5194/acp-7-5043-2007

    Article  CAS  Google Scholar 

  • Bauer, S. E., Mishchenko, M. I., Lacis, A. A., Zhang, S., Perlwitz, J., & Metzger, S. M. (2007b). Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling? Journal of Geophysical Research, 112, D0630. https://doi.org/10.1029/2005JD006977

    Article  Google Scholar 

  • Bauer, S. E., Tsigaridis, K., & Miller, R. (2016). Significant atmospheric aerosol pollution caused by world food cultivation. Geophysical Research Letters, 43, 5394–5400. https://doi.org/10.1002/2016GL068354

    Article  Google Scholar 

  • Becagli, S., Anello, F., Bommarito, C., Cassola, F., Calzolai, G., Iorio, T. D., di Sarra, A., Gómez-Amo, J.-L., Lucarelli, F., & Marconi, M. (2017). Constraining the ship contribution to the aerosol of the central Mediterranean. Atmospheric Chemistry and Physics, 17, 2067–2084. https://doi.org/10.5194/acp-17-2067-2017

    Article  CAS  Google Scholar 

  • Bond, T., Streets, D., Yarber, K., Nelson, S., Woo, J.-H., & Klimont, Z. (2004). A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 109, D14203. https://doi.org/10.1029/2003JD003697

    Article  CAS  Google Scholar 

  • Bond, T. C., Doherty, S. H., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, G., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research – Atmospheres, 118, 5380–5552. https://doi.org/10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  • Börensen, C., Kirchner, U., Scheer, V., Vogt, R., & Zellner, R. (2000). Mechanism and kinetics of the reaction of NO2 or HNO3 with alumina as a mineral dust model compound. The Journal of Physical Chemistry. A, 104, 5036–5045. https://doi.org/10.1021/jp994170d

    Article  CAS  Google Scholar 

  • Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C., Kouvarakis, G., Canonaco, F., Prévôt, A., Nenes, A., & Pandis, S. (2014). Processing of biomass-burning aerosol in the eastern Mediterranean during summertime. Atmospheric Chemistry and Physics, 14, 4793–4807. https://doi.org/10.5194/acp-14-4793-2014

    Article  CAS  Google Scholar 

  • Bougiatioti, A., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., Mihalopoulos, N., Papayannis, A., & Nenes, A. (2016). Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean. Atmospheric Chemistry and Physics, 16, 7389–7409. https://doi.org/10.5194/acp-16-7389-2016

    Article  CAS  Google Scholar 

  • Bouwman, A. F., Lee, D. S., Asman, W., Dentener, F. J., Van Der Hoek, K. W., & Olivier, J. G. J. (1997). A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles, 11, 561–587. https://doi.org/10.1029/97GB02266

  • Brooks, S. D., Suter, K., & Olivarez, L. (2014). Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols. The Journal of Physical Chemistry. A, 118, 10036–10047. https://doi.org/10.1021/jp508809y

    Article  CAS  Google Scholar 

  • Browne, E. C., Zhang, X., Franklin, J. P., Ridley, K. J., Kirchstetter, T. W., Wilson, K. R., Cappa, C. D., & Kroll, J. H. (2019). Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol. Aerosol Science and Technology, 53, 663–679. https://doi.org/10.1080/02786826.2019.1599321

    Article  CAS  Google Scholar 

  • Caquineau, S., Gaudichet, A., Gomes, L., Magonthier, M. C., & Chatenet, B. (1998). Saharan dust: Clay ratio as a relevant tracer to assess the origin of soil derived aerosols. Geophysical Research Letters, 25, 983–986. https://doi.org/10.1029/98GL00569

    Article  CAS  Google Scholar 

  • Carbone, C., Decesari, S., Paglione, M., Giulianelli, L., Rinaldi, M., Marinoni, A., Cristofanelli, P., Didiodato, A., Bonasoni, P., Fuzzi, S., & Facchini, M. C. (2014). 3-year chemical composition of free tropospheric PM1 at the Mt. Cimone GAW global station – South Europe – 2165 m a.s.l. Atmospheric Environment, 87, 218–227. https://doi.org/10.1016/j.atmosenv.2014.01.048

    Article  CAS  Google Scholar 

  • Carrico, C. M., Petters, M. D., Kreidenweis, S. M., Sullivan, A. P., McMeeking, G. R., Levin, E. J. T., Engling, G., Malm, W. C., & Collett, J. L., Jr. (2010). Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmospheric Chemistry and Physics, 10, 5165–5178. https://doi.org/10.5194/acp-10-5165-2010

    Article  CAS  Google Scholar 

  • Cerro, J. C., Cerdà, V., Querol, X., Alastuey, A., & Pey, J. (2020). Variability of air pollutants, and PM composition and sources at a regional background site in the Balearic Islands: Review of western Mediterranean phenomenology from a 3-year study. Science of the Total Environment, 717, 137177. https://doi.org/10.1016/j.scitotenv.2020.137177

    Article  CAS  Google Scholar 

  • Cerully, K. M., Bougiatioti, A., Hite, J. R., Jr., Guo, H., Xu, L., Ng, N. L., Weber, R., & Nenes, A. (2015). On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States. Atmospheric Chemistry and Physics, 15, 8679–8694. https://doi.org/10.5194/acp-15-8679-2015

    Article  CAS  Google Scholar 

  • Cesari, D., Donateo, A., Conte, M., Merico, E., Giangreco, A., Giangreco, F., & Contini, D. (2016). An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment. Atmospheric Research, 174–175, 106–119. https://doi.org/10.1016/j.atmosres.2016.02.004

    Article  CAS  Google Scholar 

  • Chabas, A., & Lefèvre, R. A. (2000). Chemistry and microscopy of atmospheric particulates at Delos (Cyclades–Greece). Atmospheric Environment, 34, 225–238. https://doi.org/10.1016/S1352-2310(99)00255-1

    Article  CAS  Google Scholar 

  • Contini, D., Vecchi, R., & Viana, M. (2018). Carbonaceous aerosols in the atmosphere. Atmosphere, 9, 181. https://doi.org/10.3390/atmos9050181

    Article  CAS  Google Scholar 

  • Cook, J., Highwood, E. J., Coe, H., Formenti, P., Haywood, J. M., & Crosier, J. (2007). A comparison of aerosol optical and chemical properties over the Adriatic and Black Seas during summer 2004: Two case studies from ADRIEX. Quarterly Journal of the Royal Meteorological Society, 133(Suppl. 1), 33–45. https://doi.org/10.1002/qj.93

    Article  Google Scholar 

  • Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., & Wallington, T. J. (2010). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – Heterogeneous reactions on solid substrates. Atmospheric Chemistry and Physics, 10, 9059–9223. https://doi.org/10.5194/acp-10-9059-2010

    Article  CAS  Google Scholar 

  • Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., Laskin, A., Scherer, M. M., & Grassian, V. H. (2008). Characterization and acid-mobilization study of iron-containing mineral dust source materials. Journal of Geophysical Research, 113, D05202. https://doi.org/10.1029/2007JD009332

    Article  CAS  Google Scholar 

  • De Gouw, J., & Jimenez, J. L. (2009). Organic aerosols in the earth atmosphere. Environmental Science & Technology, 43, 7614–7618. https://doi.org/10.1021/es9006004

    Article  CAS  Google Scholar 

  • Decesari, S., Facchini, M. C., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A. R., & Smith, D. M. (2002). Water soluble organic compounds formed by oxidation of soot. Atmospheric Environment, 36, 1827–1832. https://doi.org/10.1016/S1352-2310(02)00141-3

    Article  CAS  Google Scholar 

  • Denjean, C. (2022). Aerosol hygroscopicity. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 2, From air pollutant sources to impacts). Springer, this volume. https://doi.org/10.1007/978-3-030-82385-6_15

    Google Scholar 

  • Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., & Crutzen, P. J. (1996). Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research, 101, 22869. https://doi.org/10.1029/96JD01818

    Article  CAS  Google Scholar 

  • Ellison, G. B., Tuck, A. F., & Vaida, V. (1999). Atmospheric processing of organic aerosols. Journal of Geophysical Research – Atmospheres, 104, 11633–11641. https://doi.org/10.1029/1999JD900073

    Article  CAS  Google Scholar 

  • Falkovich, A., Ganor, E., Levin, Z., Formenti, P., & Rudich, Y. (2001). Chemical and mineralogical analysis of individual mineral dust particles. Journal of Geophysical Research, 106, 18029–18036. https://doi.org/10.1029/2000JD900430

    Article  CAS  Google Scholar 

  • Falkovich, A. H., Schkolnik, G., Ganor, E., & Rudich, Y. (2004). Adsorption of organic compounds pertinent to urban environments onto mineral dust particles. Journal of Geophysical Research, 109, D02208. https://doi.org/10.1029/2003JD003919

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J. (2003). The tropospheric chemistry of sea salt: A molecular-level view of the chemistry of NaCl and NaBr. Chemical Reviews, 103, 12, 4801–4822. https://doi.org/10.1021/cr020653t

    Article  CAS  Google Scholar 

  • Formenti, P., Andreae, M. O., Ichoku, C., Andreae, T. W., Schebeske, G., Kettle, A. J., Maenhaut, W., Cafmeyer, J., Karnieli, A., & Lelieveld, J. (2001). Physical and chemical characteristics of aerosols over the Negev Desert (Israel). Journal of Geophysical Research, 106, 4871–4890. https://doi.org/10.1029/2000JD900556

    Article  CAS  Google Scholar 

  • Formenti, P., Rajot, J. L., Desboeufs, K., Caqineau, S., Chevaillier, S., Nava, S., Gaudichet, A., Journet, E., Triquet, S., Alfaro, S., Chiari, M., Haywood, J., Coe, H., & Highwood, E. (2008). Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/DABEX and DODO field campaigns. Journal of Geophysical Research, 113, D00C13. https://doi.org/10.1029/2008JD009903

    Article  CAS  Google Scholar 

  • Fu, H., Cwiertny, D. M., Carmichael, G. R., Scherer, M. M., & Grassian, V. H. (2010). Photoreductive dissolution of Fe-containing mineral dust particles in acidic media. Journal of Geophysical Research, 115, D11304. https://doi.org/10.1029/2009JD012702

    Article  CAS  Google Scholar 

  • Galindo, N., Yubero, E., Clemente, A., Nicolas, J. F., Navarro-Selma, B., & Crespo, J. (2019). Insights into the origin and evolution of carbonaceous aerosols in a mediterranean urban environment. Chemosphere, 235, 636–642. https://doi.org/10.1016/j.chemosphere.2019.06.202

    Article  CAS  Google Scholar 

  • Ganor, E., Levin, Z., & Van Grieken, R. (1998). Composition of individual aerosol particles above the israelian Mediterranean coast during the summer time. Atmospheric Environment, 32, 1631–1642. https://doi.org/10.1016/S1352-2310(97)00397-X

    Article  CAS  Google Scholar 

  • George, I. J., & Abbatt, J. P. D. (2010). Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nature Chemistry, 2, 713–722. https://doi.org/10.1038/nchem.806

    Article  CAS  Google Scholar 

  • George, C., Ndour, M., Balkanski, Y., & Ka, O. (2007). Photoenhanced uptake of NO2 on mineral dust. In W. Mellouki & A. R. Ravishankara (Eds.), Regional climate variability and its impacts in the Mediterranean area (NATO science series IV earth and environmental sciences) (Vol. 79, pp. 219–233). https://doi.org/10.1007/978-1-4020-6429-6_16

    Chapter  Google Scholar 

  • George, I. J., Chang, R. Y.-W., Danov, V., Vlasenko, A., & Abbatt, J. P. D. (2009). Modification of cloud condensation nucleus activity of organic aerosols by hydroxyl radical heterogeneous oxidation. Atmospheric Environment, 43, 5038–5045. https://doi.org/10.1016/j.atmosenv.2009.06.043

    Article  CAS  Google Scholar 

  • George, C., Ammann, M., D’Anna, B., Donladson, D. J., & Nizkodrov, S. A. (2015). Heterogeneous photochemistry in the atmosphere. Chemical Reviews, 115, 4218–4258. https://doi.org/10.1021/cr500648z

    Article  CAS  Google Scholar 

  • Gobbi, G. P., Barnaba, F., Di Liberto, L., Bolignano, A., Lucarelli, F., Nava, S., Perrino, C., Pietrodangelo, A., Basart, S., Costabile, F., Dionisi, D., Rizza, U., Canepari, S., Sozzi, R., Morelli, M., Manigrasso, M., Drewnick, F., Struckmeier, C., Poenitz, K., & Wille, H. (2019). An inclusive view of Saharan dust advections to Italy and the Central Mediterranean. Atmospheric Environment, 201, 242–256. https://doi.org/10.1016/j.atmosenv.2019.01.002

    Article  CAS  Google Scholar 

  • Goldstein, A. H., & Galbally, I. E. (2007). Known and unexplored organic constituents in the Earth’s atmosphere. Environmental Science & Technology, 41, 1515–1521. https://doi.org/10.1021/es072476p

    Article  Google Scholar 

  • Guerzoni, S., Cristini, A., Caboi, R., Le Bolloch, O., Marras, I., & Rundeddu, L. (1995). Ionic composition of rainwater and atmospheric aerosols in Sardinia Southern Mediterranean. Water, Air Soil & Pollution, 85, 2077–2082. https://doi.org/10.1007/BF01186140

    Article  CAS  Google Scholar 

  • Guieu, C., Loÿe-Pilot, M.-D., Ridame, C., & Thomas, C. (2002). Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. Journal of Geophysical Research, 107, 4258. https://doi.org/10.1029/2001JD000582

  • Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., … Wildt, J. (2009). The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmospheric Chemistry and Physics, 9, 5155–5236. https://doi.org/10.5194/acp-9-5155-2009

    Article  CAS  Google Scholar 

  • Han, J.-H., Hung, H.-M., & Martin, S. T. (2002). Size effect of hematite and corundum inclusions on the efflorescence relative humidities of aqueous ammonium nitrate particles. Journal of Geophysical Research, 107, 4086. https://doi.org/10.1029/2001JD001054

    Article  Google Scholar 

  • Hanisch, F., & Crowley, J. N. (2001a). Heterogeneous reactivity of gaseous nitric acid on Al2O3, CaCO3 and atmospheric dust samples: A Knudsen cell study. The Journal of Physical Chemistry. A, 105, 3096–3106. https://doi.org/10.1021/jp001254+

    Article  CAS  Google Scholar 

  • Hanisch, F., & Crowley, J. N. (2001b). The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual mineral and clay mineral components. Physical Chemistry Chemical Physics, 3, 2474–2482. https://doi.org/10.1039/B101700O

    Article  CAS  Google Scholar 

  • Hasegawa, S., & Ohta, S. (2002). Some measurements of the mixing state of soot-containing particles at urban and non-urban areas. Atmospheric Environment, 36, 3899–3908. https://doi.org/10.1016/S1352-2310(02)00343-6

    Article  CAS  Google Scholar 

  • Hauglustaine, D. A., Balkanski, Y., & Schulz, M. (2014). A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate. Atmospheric Chemistry and Physics, 14, 11031–11063. https://doi.org/10.5194/acp-14-11031-2014

    Article  CAS  Google Scholar 

  • Hildebrandt, L., Engelhart, G., Mohr, C., Kostenidou, E., Lanz, V., Bougiatioti, A., DeCarlo, P., Prevot, A., Baltensperger, U., & Mihalopoulos, N. (2010). Aged organic aerosol in the Eastern Mediterranean: The Finokalia aerosol measurement experiment–2008. Atmospheric Chemistry and Physics, 10, 4167–4186. https://doi.org/10.5194/acp-10-4167-2010

    Article  CAS  Google Scholar 

  • Hildebrandt, L., Kostenidou, E., Lanz, V., Prevot, A., Baltensperger, U., Mihalopoulos, N., Laaksonen, A., Donahue, N. M., & Pandis, S. N. (2011). Sources and atmospheric processing of organic aerosol in the Mediterranean: Insights from aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 11, 12499–12515. https://doi.org/10.5194/acp-11-12499-2011

    Article  CAS  Google Scholar 

  • Im, U., Markakis, K., Kocak, M., Gerasopoulos, E., Daskalakis, N., Mihalopoulos, N., Poupkou, A., Kinda, T., Unal, A., & Kanakidou, M. (2012). Summertime aerosol chemical composition in the eastern Mediterranean and its sensitivity to temperature. Atmospheric Environment, 50, 164–173. https://doi.org/10.1016/j.atmosenv.2011.12.044

    Article  CAS  Google Scholar 

  • Jacobson, M. Z. (2000). A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols. Geophysical Research Lettters, 27, 217–220. https://doi.org/10.1029/1999GL010968

  • Kanakidou, M., Myriokefalitakis, S., Papadimitriou, V. C., & Nenes, A. (2022). Aerosol impact on atmospheric and precipitation chemistry. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 2, From air pollutant sources to impacts). Springer, this volume. https://doi.org/10.1007/978-3-030-82385-6_21

    Google Scholar 

  • Kandler, K., Schütz, L., Jäckel, S., Lieke, K., Emmel, C., Müller-Ebert, D., Ebert, M., Scheuvens, D., Schladitz, A., Wiedensohler, A., & Weinbruch, S. (2011). Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan 2 mineral dust experiment: Microphysical properties and mineralogy. Tellus B: Chemical and Physical Meteorology, 63, 459–474. https://doi.org/10.3402/tellusb.v63i4.16240

    Article  CAS  Google Scholar 

  • Karageorgos, E. T., & Rapsomanikis, S. (2007). Chemical characterization of the inorganic fraction of aerosols and mechanisms of the neutralization of atmospheric acidity in Athens, Greece. Atmospheric Chemistry and Physics, 7, 3015–3033. https://doi.org/10.5194/acp-7-3015-2007

    Article  CAS  Google Scholar 

  • Karagulian, F., & Rossi, M. J. (2005). The heterogeneous chemical kinetics of NO3 on atmospheric mineral dust surrogates. Physical Chemistry Chemical Physics, 7, 3150–3162. https://doi.org/10.1039/B506750M

    Article  CAS  Google Scholar 

  • Kawamura, K., & Sakaguchi, F. (1999). Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research: Atmospheres, 104, 3501–3509. https://doi.org/10.1029/1998JD100041

    Article  CAS  Google Scholar 

  • Keene, W. C., Pszenny, A. A. P., Jacob, D. J., Duce, R. A., Galloway, J. N., Schultz-Tokos, J. J., Sievering, H., & Boatman, J. F. (1990). The geochemical cycling of reactive chlorine through marine troposphere. Global Biogeochemical Cycles, 4, 407–430. https://doi.org/10.1029/GB004i004p00407

    Article  CAS  Google Scholar 

  • Kerminen, V. M., Teinila, K., Hillamo, R., & Pakkanen, T. (1998). Substitution of chloride in sea-salt particles by inorganic and organic anions. Journal of Aerosol Science, 29, 929–942. https://doi.org/10.1016/S0021-8502(98)00002-0

    Article  CAS  Google Scholar 

  • Key, J. M., Paulk, N., & Johansen, A. M. (2008). Photochemistry of iron in simulated crustal aerosols with dimethyl sulfide oxidation products. Environmental Science & Technology, 42, 133–139. https://doi.org/10.1021/es071469y

    Article  CAS  Google Scholar 

  • Klaver, A., Formenti, P., Caquineau, S., Chevaillier, S., Ausset, P., Calzolai, G., Osborne, S., Johnson, B., Harrsion, M., & Dubovik, O. (2011). Physico-chemical and optical properties of Sahelian and Saharan mineral dust: In situ measurements during the GERBILS campaign. Quarterly Journal of the Royal Meteorological Society, 137, 1193–1210. https://doi.org/10.1002/qj.889

    Article  Google Scholar 

  • Koçak, M., Kubilay, N., & Mihalopolos, N. (2004). Ionic composition of lower tropospheric aerosols at a Northeastern Mediterranean site: Implications regarding sources and long-range transport. Atmospheric Environment, 38, 2067–2077. https://doi.org/10.1016/j.atmosenv.2004.01.030

    Article  CAS  Google Scholar 

  • Koçak, M., Mihalopoulos, N., & Kubilay, N. (2007). Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean. Atmospheric Environment, 41, 7351–7368. https://doi.org/10.1016/j.atmosenv.2007.05.011

    Article  CAS  Google Scholar 

  • Krueger, B. J., Grassian, V. H., Cowin, J. P., & Laskin, A. (2004). Heterogeneous chemistry of individual mineral dust particles from different dust source regions: The importance of particle mineralogy. Atmospheric Environment, 38, 6253–6261. https://doi.org/10.1016/j.atmosenv.2004.07.010

    Article  CAS  Google Scholar 

  • Larsen, O., & Postma, D. (2001). Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochimica et Cosmochimica Acta, 65, 1367–1379. https://doi.org/10.1016/S0016-7037(00)00623-2

    Article  CAS  Google Scholar 

  • Laskin, A., Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang, B., Nigge, P., & Shutthanandan, J. (2012). Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids. Journal of Geophysical Research, 117, D15302. https://doi.org/10.1029/2012JD017743

    Article  CAS  Google Scholar 

  • Laskin, A., Laskin, J., & Nizkodrov, S. A. (2015). Chemistry of atmospheric brown carbon. Chemical Reviews, 115, 4335–4382. https://doi.org/10.1021/cr5006167

    Article  CAS  Google Scholar 

  • Levin, Z., Teller, A., Ganor, E., & Yin, Y. (2005). On the interactions of mineral dust, sea-salt particles, and clouds: A measurement and modeling study from the Mediterranean Israeli Dust Experiment campaign. Journal of Geophysical Research, 110, D20202. https://doi.org/10.1029/2005JD005810

    Article  Google Scholar 

  • Li, J., Wang, W.-C., Liao, H., & Chang, W. (2014). Past and future direct radiative forcing of nitrate aerosol in East Asia. Theoretical and Applied Climatology, 121, 445–458. https://doi.org/10.1007/s00704-014-1249-1

    Article  Google Scholar 

  • Liakakou, E., Kaskaoutis, D. G., Grivas, G., Stavroulas, I., Tsagkaraki, M., Paraskevopoulou, D., Bougiatioti, A., Dumka, U. C., Gerasopoulos, E., & Mihalopoulos, N. (2020). Long-term brown carbon spectral characteristics in a Mediterranean city (Athens). The Science of the Total Environment, 708, 135019. https://doi.org/10.1016/j.scitotenv.2019.135019

    Article  CAS  Google Scholar 

  • Mallet, M. D., D’Anna, B., Même, A., Bove, M. C., Cassola, F., Pace, G., Desboeufs, K., Di Biagio, C., Doussin, J.-F., Maille, M., Massabò, D., Sciare, J., Zapf, P., di Sarra, A. G., & Formenti, P. (2019). Summertime surface PM1 aerosol composition and size by source region at the Lampedusa island in the central Mediterranean Sea. Atmospheric Chemistry and Physics, 19, 11123–11142. https://doi.org/10.5194/acp-19-11123-2019

    Article  CAS  Google Scholar 

  • Marconi, M., Sferlazzo, D. M., Becagli, S., Bommarito, C., Calzolai, G., Chiari, M., di Sarra, A., Ghedini, C., Gómez-Amo, J. L., Lucarelli, F., Meloni, D., Monteleone, F., Nava, S., Pace, G., Piacentino, S., Rugi, F., Severi, M., Traversi, R., & Udisti, R. (2014). Saharan dust aerosol over the central Mediterranean Sea: PM10 chemical composition and concentration versus optical columnar measurements. Atmospheric Chemistry and Physics, 14, 2039–2054. https://doi.org/10.5194/acp-14-2039-2014

    Article  CAS  Google Scholar 

  • Michoud, V., Sciare, J., Sauvage, S., Dusanter, S., Léonardis, T., Gros, V., Kalogridis, C., Zannoni, N., Féron, A., & Petit, J.-E. (2017). Organic carbon at a remote site of the western Mediterranean Basin: Sources and chemistry during the ChArMEx SOP2 field experiment. Atmospheric Chemistry and Physics, 17, 8837–8865. https://doi.org/10.5194/acp-17-8837-2017

    Article  CAS  Google Scholar 

  • Mihalopoulos, N., Stephanou, E., Kanakidou, M., Pilitsidis, S., & Bousquet, P. (1997). Tropospheric aerosol ionic composition in the Eastern Mediterranean region. Tellus B: Chemical and Physical Meteorology, 49, 314–326. https://doi.org/10.1034/j.1600-0889.49.issue3.7.x

    Article  Google Scholar 

  • Minguillón, M., Pérez, N., Marchand, N., Bertrand, A., Temime-Roussel, B., Agrios, K., Szidat, S., van Drooge, B., Sylvestre, A., & Alastuey, A. (2016). Secondary organic aerosol origin in an urban environment: Influence of biogenic and fuel combustion precursors. Faraday Discussions, 189, 337–359. https://doi.org/10.1039/C5FD00182J

    Article  CAS  Google Scholar 

  • Mogili, P. K., Kleiber, P. D., Young, M. A., & Grassian, V. H. (2006). Heterogeneous uptake of ozone on reactive components of mineral dust aerosol: An environmental aerosol reaction chamber study. The Journal of Physical Chemistry. A, 110, 13799–13807. https://doi.org/10.1021/jp063620g

    Article  CAS  Google Scholar 

  • Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., Mounkaila, M., Elvira, J., & Gibbons, W. (2006). Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere, 65, 261–270. https://doi.org/10.1016/j.chemosphere.2006.02.052

    Article  CAS  Google Scholar 

  • Paglione, M., Saarikoski, S., Carbone, S., Hillamo, R., Facchini, M. C., Finessi, E., Giulianelli, L., Carbone, C., Fuzzi, S., Moretti, F., Tagliavini, E., Swietlicki, E., Stenström, K. E., Prévôt, A. S. H., Massoli, P., Canaragatna, M., Worsnop, D., & Decesari, S. (2014). Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy). Atmospheric Chemistry and Physics, 14, 5089–5110. https://doi.org/10.5194/acp-14-5089-2014

    Article  CAS  Google Scholar 

  • Paraskevopoulou, D., Liakakou, E., Gerasopoulos, E., & Mihalopoulos, N. (2015). Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece. The Science of the Total Environment, 527–528, 165–178. https://doi.org/10.1016/j.scitotenv.2015.04.022

    Article  CAS  Google Scholar 

  • Paulot, F., Jacob, D. J., Pinder, R., Bash, J., Travis, K., & Henze, D. (2014). Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). Journal of Geophysical Research – Atmospheres, 119, 4343–4364. https://doi.org/10.1002/2013JD021130

    Article  CAS  Google Scholar 

  • Pérez, N., Pey, J., Reche, C., Cortés, J., Alastuey, A., & Querol, X. (2016). Impact of harbour emissions on ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of secondary aerosol formation within the urban area. The Science of the Total Environment, 571, 237–250. https://doi.org/10.1016/j.scitotenv.2016.07.025

  • Petit, J.-E., Favez, O., Albinet, A., & Canonaco, F. (2017). A user-friendly tool for comprehensive evaluation of the geographical origins of atmospheric pollution: Wind and trajectory analyses. Environmental Modelling and Software, 88, 183–187. https://doi.org/10.1016/j.envsoft.2016.11.022

    Article  Google Scholar 

  • Petters, M. D., Prenne, A. J., Kreidenweis, S. M., DeMott, P. J., Matsunaga, A., Lim, Y. B., & Ziemann, P. J. (2006). Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophysical Research Letters, 33, L24806. https://doi.org/10.1029/2006GL027249

    Article  CAS  Google Scholar 

  • Pey, J., Querol, X., & Alastuey, A. (2009). Variations of levels and composition of PM10 and PM2.5 at an insular site in the Western Mediterranean. Atmospheric Research, 94, 285–299. https://doi.org/10.1016/j.atmosres.2009.06.006

    Article  CAS  Google Scholar 

  • Pey, J., Querol, X., Alastuey, A., Forastiere, F., & Stafoggia, M. (2013). African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmospheric Chemistry and Physics, 13, 1395–1410. https://doi.org/10.5194/acp-13-1395-2013

    Article  CAS  Google Scholar 

  • Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., & Zhang, X.-Y. (2013). Recommendations for reporting “black carbon” measurements. Atmospheric Chemistry and Physics, 13, 8365–8379. https://doi.org/10.5194/acp-13-8365-2013

  • Pio, C. A., Cerqueira, M. A., Castro, L. M., & Salgueiro, M. L. (1996). Sulphur and nitrogen compounds in variable marine/continental air masses at the southwest European coast. Atmospheric Environment, 30, 3115–3127. https://doi.org/10.1016/1352-2310(96)00059-3

    Article  CAS  Google Scholar 

  • Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie, International Edition, 44, 7520–7540. https://doi.org/10.1002/anie.200501122

    Article  CAS  Google Scholar 

  • Pósfai, M., Anderson, J. R., Buseck, P. R., Shattuck, T. W., & Tindale, N. W. (1994). Constituents of a remote pacific marine aerosol: A TEM study. Atmospheric Environment, 28, 1747–1756. https://doi.org/10.1016/1352-2310(94)90137-6

    Article  Google Scholar 

  • Pósfai, M., Anderson, J. R., Buseck, P. R., & Sievering, H. (1995). Compositional variations of sea-salt-mode aerosol particles from the North Atlantic. Journal of Geophysical Research, 100, 23063–23074. https://doi.org/10.1029/95JD01636

    Article  Google Scholar 

  • Pósfai, M., Anderson, J. R., Buseck, P. R., & Sievering, H. (1999). Soot and sulfate aerosol particles in the remote marine troposphere. Journal of Geophysical Research, 104, 21685–21694. https://doi.org/10.1029/1999JD900208

    Article  Google Scholar 

  • Putaud, J. P., Raes, F., Van Dingenen, R., Bruggemann, E., Facchini, M. C., Decesari, S., Fuzzi, S., Gehrig, R., Huglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Muller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., … Wiedensohler, A. (2004a). A European aerosol phenomenology 2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2579–2595. https://doi.org/10.1016/j.atmosenv.2004.01.041

    Article  CAS  Google Scholar 

  • Putaud, J.-P., Van Dingenen, R., Dell’Acqua, A., Raes, F., Matta, E., Decesari, S., Facchini, M. C., & Fuzzi, S. (2004b). Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I) during MINATROC. Atmospheric Chemistry and Physics, 4, 889–902. https://doi.org/10.5194/acp-4-889-2004

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Pey, J., Cusack, M., Pérez, N., Mihalopoulos, N., Theodosi, C., Gerasopoulos, E., Kubilay, N., & Koçak, M. (2009). Variability in regional background aerosols within the Mediterranean. Atmospheric Chemistry and Physics, 9, 4575–4591. https://doi.org/10.5194/acp-9-4575-2009

    Article  CAS  Google Scholar 

  • Remoundaki, E., Kassomenos, P., Mantas, E., Mihalopoulos, N., & Tsezos, M. (2013). Composition and mass closure of PM2.5 in urban environment (Athens, Greece). Aerosol and Air Quality Research, 13, 72–82. https://doi.org/10.4209/aaqr.2012.03.0054

    Article  CAS  Google Scholar 

  • Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., & Pandis, S. N. (2007). Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science, 315, 1259–1262. https://doi.org/10.1126/science.1133061

    Article  CAS  Google Scholar 

  • Rossi, M. J. (2003). Heterogeneous reactions on salts. Chemical Reviews, 103, 4823–4882. https://doi.org/10.1021/cr020507n

    Article  CAS  Google Scholar 

  • Rudich, Y. (2003). Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. Chemical Reviews, 103, 5097–5124. https://doi.org/10.1021/cr020508f

    Article  CAS  Google Scholar 

  • Rudich, Y., Donahue, N. M., & Mentel, T. F. (2007). Aging of organic aerosol: Bridging the gap between laboratory and field studies. Annual Review of Physical Chemistry, 58, 321–352. https://doi.org/10.1146/annurev.physchem.58.032806.104432

    Article  CAS  Google Scholar 

  • Santschi, C., & Rossi, M. J. (2006). The uptake of CO2, SO2, HNO3 and HCl on CaCO3 at 300K: Mechanism and the role of adsorbed water. The Journal of Physical Chemistry. A, 110, 6789–6802. https://doi.org/10.1021/jp056312b

    Article  CAS  Google Scholar 

  • Saydam, A. C., & Senyuva, H. Z. (2002). Deserts: Can they be the potential suppliers of bioavailable iron? Geophysical Research Letters, 29, 1524. https://doi.org/10.1029/2001GL013562

    Article  Google Scholar 

  • Scheuvens, D., Schütz, L., Kandler, K., Ebert, M., & Weinbruch, S. (2013). Bulk composition of northern African dust and its source sediments – A compilation. Earth-Science Reviews, 116, 170–194. https://doi.org/10.1016/j.earscirev.2012.08.005

    Article  CAS  Google Scholar 

  • Sciare, J., Oikonomou, K., Cachier, H., Mihalopoulos, N., Andreae, M. O., Maenhaur, W., & Sarda-Estève, R. (2005). Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign. Atmospheric Chemistry and Physics, 5, 2253–2265. https://doi.org/10.5194/acp-5-2253-2005

    Article  CAS  Google Scholar 

  • Sciare, J., Oikonomou, K., Favez, O., Liakakou, E., Markaki, Z., Cachier, H., & Mihalopoulos, N. (2008). Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: Evidence of long-range transport of biomass burning. Atmospheric Chemistry and Physics, 8, 5551–5563. https://doi.org/10.5194/acp-8-5551-2008

    Article  CAS  Google Scholar 

  • Seisel, S., Börensen, C., Vogt, R., & Zellner, R. (2004). The heterogeneous reaction of HNO3 on mineral dust and alumina surfaces: A combined Knudsen cell and DRIFTS study. Physical Chemistry Chemical Physics, 6, 5498–5508. https://doi.org/10.1039/b410793d

    Article  CAS  Google Scholar 

  • Sellegri, K., Gourdeau, J., Putaud, J.-P., & Despiau, S. (2001). Chemical composition of marine aerosol in a Mediterranean coastal zone during the FETCH experiment. Journal of Geophysical Research, 106, 12023–12037. https://doi.org/10.1029/2000JD900629

    Article  CAS  Google Scholar 

  • Setyan, A., Sauvain, J.-J., & Rossi, M. J. (2009). The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot and TiO2 nanoparticles. Physical Chemistry Chemical Physics, 11, 6205–6217. https://doi.org/10.1039/B902509J

    Article  CAS  Google Scholar 

  • Setyan, A., Sauvain, J.-J., Guillemin, M., Riediker, M., Demirdjian, B., & Rossi, M. J. (2010). Probing functional groups at the gas–aerosol interface using heterogeneous titration reactions: A tool for predicting aerosol health effects? ChemPhysChem, 11, 3823–3835. https://doi.org/10.1002/cphc.201000490

    Article  CAS  Google Scholar 

  • Shi, Z., Krom, M. D., Bonneville, S., Baker, A. R., Jickells, T. D., & Benning, L. G. (2009). Formation of iron nanoparticles and increase in iron reactivity in the mineral dust during simulated cloud processing. Environmental Science & Technology, 43, 6592–6596. https://doi.org/10.1021/es901294g

  • Shi, Z., Krom, M. D., Bonneville, S., Baker, A. R., Bristow, C., Drake, N., Mann, G., Carslaw, K., McQuaid, J. B., Jickells, T., & Benning, L. G. (2011). Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing. Global Biogeochemical Cycles, 25, GB2010. https://doi.org/10.1029/2010GB003837

    Article  CAS  Google Scholar 

  • Sobanska, S., Coeur, C., Maenhaut, W., & Adams, F. (2003). SEM-EDX characterisation of tropospheric aerosols in the Negev desert (Niger). Journal of Atmospheric Chemistry, 44, 299–322. https://doi.org/10.1023/A:1022969302107

    Article  CAS  Google Scholar 

  • Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., & Pavoni, B. (2013). Factors determining the formation of secondary inorganic aerosol: A case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13, 1927–1939. https://doi.org/10.5194/acp-13-1927-2013

    Article  CAS  Google Scholar 

  • Stockdale, A., Kroma, M. D., Mortimer, R. J. G., Benninga, L. G., Carslawa, K. S., Herberta, R. J., Shi, Z., Myriokefalitakis, S., Kanakidou, M., & Nenes, A. (2016). Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. Proceeding of National Academy Science, 113, 14639–14644. https://doi.org/10.1073/pnas.1608136113

    Article  CAS  Google Scholar 

  • Suda, S. R., Petters, M. D., Yeh, G. K., Strollo, C., Matsunaga, A., Faulhaber, A., Ziemann, P. J., Prenni, A. J., Carrico, C. M., Sullivan, R. C., & Kreidenweis, S. M. (2014). Influence of functional groups on organic aerosol cloud condensation nucleus activity. Environmental Science & Technology, 48, 10182–10190. https://doi.org/10.1021/es502147y

    Article  CAS  Google Scholar 

  • Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., & Prather, K. A. (2009a). Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid. Physical Chemistry Chemical Physics, 11, 7826–7837. https://doi.org/10.1039/b904217b

    Article  CAS  Google Scholar 

  • Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., & Prather, K. A. (2009b). Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmospheric Chemistry and Physics, 9, 3303–3316. https://doi.org/10.5194/acp-9-3303-2009

    Article  CAS  Google Scholar 

  • Sulzberger, B., & Laubscher, H. (1995). Reactivity of various types of iron(III) (hydr)oxides towards light-induced dissolution. Marine Chemistry, 50, 103–115. https://doi.org/10.1016/0304-4203(95)00030-U

    Article  CAS  Google Scholar 

  • Tasoglou, A., Louvaris, E., Florou, K., Liangou, A., Karnezi, E., Kaltsonoudis, C., Wang, N., & Pandis, S. N. (2020). Aerosol light absorption and the role of extremely low volatility organic compounds. Atmospheric Chemistry and Physics, 20, 11625–11637. https://doi.org/10.5194/acp-20-11625-2020

    Article  CAS  Google Scholar 

  • Theodosi, C., Grivas, G., Zarmpas, P., Chaloulakou, A., & Mihalopoulos, N. (2011). Mass and chemical composition of size-segregated aerosols (PM1, PM2.5, PM10) over Athens, Greece: Local versus regional sources. Atmospheric Chemistry and Physics, 11, 11895–11911. https://doi.org/10.5194/acp-11-11895-2011

    Article  CAS  Google Scholar 

  • Tursic, J., Podkrajsek, B., Grgic, I., Ctyroky, P., Berner, A., Dusek, U., & Hitzenberger, R. (2006). Chemical composition and hygroscopic properties of size-segregated aerosol particles collected at the Adriatic coast of Slovenia. Chemosphere, 63, 1193–1202. https://doi.org/10.1016/j.chemosphere.2005.08.040

    Article  CAS  Google Scholar 

  • Ullerstam, M., Vogt, R., Langer, S., & Ljungström, E. (2002). The kinetics and mechanism of SO2 oxidation by O3 on mineral dust. Physical Chemistry Chemical Physics, 4, 4694–4699. https://doi.org/10.1039/b203529b

    Article  CAS  Google Scholar 

  • Ullerstam, M., Johnson, M. S., Vogt, R., & Ljungström, E. (2003). DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust. Atmospheric Chemistry and Physics, 3, 2043–2051. https://doi.org/10.5194/acp-3-2043-2003

    Article  CAS  Google Scholar 

  • Usher, C. R., Michel, A. E., & Grassian, V. H. (2003). Reactions on mineral dust. Chemical Reviews, 103, 4883–4939. https://doi.org/10.1021/cr020657y

    Article  CAS  Google Scholar 

  • Wiederhold, J. G., Kraemer, S. M., Teutsch, N., Borer, P. M., Halliday, A. N., & Kretzschmar, R. (2006). Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environmental Science & Technology, 40, 3787–3793. https://doi.org/10.1021/es052228y

    Article  CAS  Google Scholar 

  • Wong, J. P. S., Lee, A. K. Y., Slowik, J. G., Cziczo, D. J., Leaitch, W. R., Macdonald, A., & Abbatt, J. P. D. (2011). Oxidation of ambient biogenic secondary organic aerosol by hydroxyl radicals: Effects on cloud condensation nuclei activity. Geophysical Research Letters, 38, L22805. https://doi.org/10.1029/2011GL049351

    Article  CAS  Google Scholar 

  • Zanatta, M., Gysel, M., Bukowiecki, N., Müller, T., Weingartner, E., Areskoug, H., Fiebig, M., Yttri, K. E., Mihalopoulos, N., Kouvarakis, G., Beddows, D., Harrison, R. M., Cavalli, F., Putaud, J. P., Spindler, G., Wiedensohler, A., Alastuey, A., Pandolfi, M., Sellegri, K., … Laj, P. (2016). A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. Atmospheric Environment, 145, 346–364. https://doi.org/10.1016/j.atmosenv.2016.09.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank M. J. Rossi and P. Formenti for providing the first draft of this section, based on which she developed the work presented and discussed here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Becagli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becagli, S. (2022). Aerosol Composition and Reactivity. In: Dulac, F., Sauvage, S., Hamonou, E. (eds) Atmospheric Chemistry in the Mediterranean Region. Springer, Cham. https://doi.org/10.1007/978-3-030-82385-6_13

Download citation

Publish with us

Policies and ethics

Navigation