Case Study IV: Defect Engineering of MoS2 and WS2

  • Chapter
  • First Online:
Nanostructured Photocatalyst via Defect Engineering

Abstract

Molybdenum and tungsten disulfides presented in nanoscaled form with atomically resolved structures recently have become very popular materials to demonstrate highly productive photocatalytic performance. As the introduction of specific defects can positively influence their specific characteristics and features, such as, for example, increasing the concentration and mobility of available electrons thereby enhancing their transportation characteristics or exposing metallic edges sites that are determined to be extremely attractive sites for adsorption of molecules, the demonstrated efficiency can be extended even further. Yet, specific contradiction and uncertainties toward successful realization of this strategy exist which cannot be ignored and thus should be properly addressed. Following it, the goal of this chapter is to provide systematic and deep understanding regarding the application of defects engineering to advance various features of these materials accompanied by detailed and critical evaluation of recent trends, present achievements, and conflicting results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Gupta, V. Chauhan, R. Kumar, A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorg. Chem. Commun. 121, 108200 (2020). https://doi.org/10.1016/j.inoche.2020.108200

    Article  CAS  Google Scholar 

  2. W. Zhao, J. Pan, Y. Fang, X. Che, D. Wang, K. Bu, F. Huang, Metastable MoS2: Crystal structure, electronic band structure, synthetic approach and intriguing physical properties. Chem. Eur. J. 24, 15942–15954 (2018). https://doi.org/10.1002/chem.201801018

    Article  CAS  Google Scholar 

  3. I. Song, C. Park, H.C. Choi, Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Adv. 5, 7495–7514 (2014). https://doi.org/10.1039/C4RA11852A

    Article  CAS  Google Scholar 

  4. C. Lan, C. Li, J.C. Ho, Y. Liu, 2D WS2: From vapor phase synthesis to device applications. Adv. Electron. Mater. 7, 2000688 (2021). https://doi.org/10.1002/aelm.202000688

    Article  CAS  Google Scholar 

  5. J. Gusakova, X. Wang, L.L. Shiau, A. Krivosheeva, V. Shaposhnikov, V. Borisenko, V. Gusakov, B.K. Tay, Electronic properties of bulk and monolayer TMDs: Theoretical study within DFT framework (GVJ-2e method). Phys. Status Solidi (a) 214, 1700218 (2017). https://doi.org/10.1002/pssa.201700218

    Article  CAS  Google Scholar 

  6. B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014). https://doi.org/10.1021/ja506261t

    Article  CAS  Google Scholar 

  7. L. Liu, S.B. Kumar, Y. Ouyang, J. Guo, Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58, 3042–3047 (2011). https://doi.org/10.1109/TED.2011.2159221

    Article  CAS  Google Scholar 

  8. V. Kaushik, M. Ahmad, K. Agarwal, D. Varandani, B.D. Belle, P. Das, B.R. Mehta, Charge transport in 2D MoS2, WS2, and MoS2-WS2 heterojunction-based field-effect transistors: Role of ambipolarity. J. Phys. Chem. C 124, 23368–23379 (2020). https://doi.org/10.1021/acs.jpcc.0c05651

    Article  CAS  Google Scholar 

  9. C. Wu, J. Zhang, X. Tong, P. Yu, J.-Y. Xu, J. Wu, Z.M. Wang, J. Lou, Y.-L. Chueh, A critical review on enhancement of photocatalytic hydrogen production by molybdenum disulfide: From growth to interfacial activities. Small 15, 1900578 (2019). https://doi.org/10.1002/smll.201900578

    Article  CAS  Google Scholar 

  10. A.M.Z. Tan, C. Freysoldt, R.G. Hennig, Stability of charged sulfur vacancies in 2D and bulk MoS2 from plane-wave density functional theory with electrostatic corrections. Phys. Rev. Mater. 4, 064004 (2020). https://doi.org/10.1103/PhysRevMaterials.4.064004

    Article  CAS  Google Scholar 

  11. H.-P. Komsa, A.V. Krasheninnikov, Native defects in bulk and monolayer MoS2 from first principles. Phys. Rev. B 91, 125304 (2015). https://doi.org/10.1103/PhysRevB.91.125304

    Article  CAS  Google Scholar 

  12. S.H. Song, M.-K. Joo, M. Neumann, H. Kim, Y.H. Lee, Probing defect dynamics in monolayer MoS2 via noise nanospectroscopy. Nat. Commun. 8, 2121 (2017). https://doi.org/10.1038/s41467-017-02297-3

    Article  CAS  Google Scholar 

  13. D. Liu, Y. Guo, L. Fang, J. Robertson, Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 103, 183113 (2013). https://doi.org/10.1063/1.4824893

    Article  CAS  Google Scholar 

  14. L. Feng, J. Su, Z. Liu, Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: A first-principles study. J. Alloys Compd. 613, 122–127 (2014). https://doi.org/10.1016/j.jallcom.2014.06.018

    Article  CAS  Google Scholar 

  15. A. Janotti, C.G. Van de Walle, Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005). https://doi.org/10.1063/1.2053360

    Article  CAS  Google Scholar 

  16. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.-C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013). https://doi.org/10.1021/nl4007479

    Article  CAS  Google Scholar 

  17. J.-Y. Noh, H. Kim, Y.-S. Kim, Stability and electronic structures of native defects in single-layer MoS2. Phys. Rev. B 89, 205417 (2014). https://doi.org/10.1103/PhysRevB.89.205417

    Article  CAS  Google Scholar 

  18. M. Pizzochero, O.V. Yazyev, Point defects in the 1T’ and 2H phases of single-layer MoS2: A comparative first-principles study. Phys. Rev. B 96, 245402 (2017). https://doi.org/10.1103/PhysRevB.96.245402

    Article  Google Scholar 

  19. A. Singh, A.K. Singh, Origin of n-type conductivity of monolayer MoS2. Phys. Rev. B 99, 121201 (2019). https://doi.org/10.1103/PhysRevB.99.121201

    Article  CAS  Google Scholar 

  20. V. Carozo, Y. Wang, K. Fujisawa, B.R. Carvalho, A. McCreary, S. Feng, Z. Lin, C. Zhou, N. Perea-López, A.L. Elías, B. Kabius, V.H. Crespi, M. Terrones, Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv. 3, e1602813 (2017). https://doi.org/10.1126/sciadv.1602813

    Article  CAS  Google Scholar 

  21. Y. Guo, D. Liu, J. Robertson, Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts. Appl. Phys. Lett. 106, 173106 (2015). https://doi.org/10.1063/1.4919524

    Article  CAS  Google Scholar 

  22. Z. Chu, C.-Y. Wang, J. Quan, C. Zhang, C. Lei, A. Han, X. Ma, H.-L. Tang, D. Abeysinghe, M. Staab, X. Zhang, A.H. MacDonald, V. Tung, X. Li, C.-K. Shih, K. Lai, Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging. PNAS 117, 13908–13913 (2020). https://doi.org/10.1073/pnas.2004106117

    Article  CAS  Google Scholar 

  23. F. Fabbri, F. Dinelli, S. Forti, L. Sementa, S. Pace, G. Piccinini, A. Fortunelli, C. Coletti, P. **ue, Edge defects promoted oxidation of monolayer WS2 synthesized on epitaxial graphene. J. Phys. Chem. C 124, 9035–9044 (2020). https://doi.org/10.1021/acs.jpcc.0c00350

    Article  CAS  Google Scholar 

  24. S. Salehi, A. Saffarzadeh, Atomic defect states in monolayers of MoS2 and WS2. Surf. Sci. 651, 215–221 (2016). https://doi.org/10.1016/j.susc.2016.05.003

    Article  CAS  Google Scholar 

  25. X. Wang, J. Dan, Z. Hu, J.F. Leong, Q. Zhang, Z. Qin, S. Li, J. Lu, S.J. Pennycook, W. Sun, C.H. Sow, Defect heterogeneity in monolayer WS2 unveiled by work function variance. Chem. Mater. 31, 7970–7978 (2019). https://doi.org/10.1021/acs.chemmater.9b02157

    Article  CAS  Google Scholar 

  26. B. Schuler, J.-H. Lee, C. Kastl, K.A. Cochrane, C.T. Chen, S. Refaely-Abramson, S. Yuan, E. van Veen, R. Roldán, N.J. Borys, R.J. Koch, S. Aloni, A.M. Schwartzberg, D.F. Ogletree, J.B. Neaton, A. Weber-Bargioni, How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain. ACS Nano 13, 10520–10534 (2019). https://doi.org/10.1021/acsnano.9b04611

    Article  CAS  Google Scholar 

  27. W.-F. Li, C. Fang, M.A. van Huis, Strong spin-orbit splitting and magnetism of point defect states in monolayer WS2. Phys. Rev. B 94, 195425 (2016). https://doi.org/10.1103/PhysRevB.94.195425

    Article  Google Scholar 

  28. P. Vancsó, G.Z. Magda, J. Pető, J.-Y. Noh, Y.-S. Kim, C. Hwang, L.P. Biró, L. Tapasztó, The intrinsic defect structure of exfoliated MoS2 single layers revealed by scanning tunneling microscopy. Sci. Rep. 6, 29726 (2016). https://doi.org/10.1038/srep29726

    Article  CAS  Google Scholar 

  29. T.-H. Le, Y. Oh, H. Kim, H. Yoon, Exfoliation of 2D materials for energy and environmental applications. Chem. Eur. J. 26, 6360–6401 (2020). https://doi.org/10.1002/chem.202000223

    Article  CAS  Google Scholar 

  30. J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. **e, J. Zhang, D. Wu, Z. Zhang, C. **, W. Ji, X. Zhang, J. Yuan, Z. Zhang, Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015). https://doi.org/10.1038/ncomms7293

    Article  CAS  Google Scholar 

  31. M. Precner, T. Polaković, Q. Qiao, D.J. Trainer, A.V. Putilov, C. Di Giorgio, I. Cone, Y. Zhu, X.X. **, M. Iavarone, G. Karapetrov, Evolution of metastable defects and its effect on the electronic properties of MoS2 films. Sci. Rep. 8, 6724 (2018). https://doi.org/10.1038/s41598-018-24913-y

    Article  CAS  Google Scholar 

  32. M.E. Pam, Y. Shi, J. Hu, X. Zhao, J. Dan, X. Gong, S. Huang, D. Geng, S. Pennycook, L.K. Ang, H.Y. Yang, Effects of precursor pre-treatment on the vapor deposition of WS2 monolayers. Nanoscale Adv. 1, 953–960 (2019). https://doi.org/10.1039/C8NA00212F

    Article  CAS  Google Scholar 

  33. B. Groven, M. Heyne, A. Nalin Mehta, H. Bender, T. Nuytten, J. Meersschaut, T. Conard, P. Verdonck, S. Van Elshocht, W. Vandervorst, S. De Gendt, M. Heyns, I. Radu, M. Caymax, A. Delabie, Plasma-enhanced atomic layer deposition of two-dimensional WS2 from WF6, H2 plasma, and H2S. Chem. Mater. 29, 2927–2938 (2017). https://doi.org/10.1021/acs.chemmater.6b05214

    Article  CAS  Google Scholar 

  34. Y. Liu, Y. **e, L. Liu, J. Jiao, Sulfur vacancy induced high performance for photocatalytic H2 production over 1T@2H phase MoS2 nanolayers. Catal. Sci. Technol. 7, 5635–5643 (2017). https://doi.org/10.1039/C7CY01488K

    Article  CAS  Google Scholar 

  35. Z. Zhang, Y. Dong, H. Sun, G. Liu, S. Liu, X. Yang, Defect-rich 2D reticulated MoS2 monolayers: Facile hydrothermal preparation and marvellous photoelectric properties. J. Taiwan Inst. Chem. Eng. 101, 221–230 (2019). https://doi.org/10.1016/j.jtice.2019.04.035

    Article  CAS  Google Scholar 

  36. D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng, S. Liang, H. Wang, M.-S. Cao, Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11, 38 (2019). https://doi.org/10.1007/s40820-019-0270-4

    Article  CAS  Google Scholar 

  37. S. Cao, T. Liu, S. Hussain, W. Zeng, X. Peng, F. Pan, Hydrothermal synthesis of variety low dimensional WS2 nanostructures. Mater. Lett. 129, 205–208 (2014). https://doi.org/10.1016/j.matlet.2014.05.013

    Article  CAS  Google Scholar 

  38. X. Lu, Y. Lin, H. Dong, W. Dai, X. Chen, X. Qu, X. Zhang, One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Sci. Rep. 7, 42309 (2017). https://doi.org/10.1038/srep42309

    Article  CAS  Google Scholar 

  39. Y. Li, K. Yin, L. Wang, X. Lu, Y. Zhang, Y. Liu, D. Yan, Y. Song, S. Luo, Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B 239, 537–544 (2018). https://doi.org/10.1016/j.apcatb.2018.05.080

    Article  CAS  Google Scholar 

  40. G. Alonso, V. Petranovskii, M. Del Valle, J. Cruz-Reyes, A. Licea-Claverie, S. Fuentes, Preparation of WS2 catalysts by in situ decomposition of tetraalkylammonium thiotungstates. Appl. Catal. A 197, 87–97 (2000). https://doi.org/10.1016/S0926-860X(99)00536-0

    Article  CAS  Google Scholar 

  41. C. Tsai, H. Li, S. Park, J. Park, H.S. Han, J.K. Nørskov, X. Zheng, F. Abild-Pedersen, Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 8, 15113 (2017). https://doi.org/10.1038/ncomms15113

    Article  Google Scholar 

  42. R. Chaabani, A. Lamouchi, B. Mari, R. Chtourou, Effect of sulfurization on physical and electrical properties of MoS2 films synthesized by electrodeposition route. Mater. Res. Express 6, 115902 (2019). https://doi.org/10.1088/2053-1591/ab438c

    Article  CAS  Google Scholar 

  43. S. Geng, W. Yang, Y. Liu, Y. Yu, Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction. J. Catal. 391, 91–97 (2020). https://doi.org/10.1016/j.jcat.2020.05.042

    Article  CAS  Google Scholar 

  44. Y. **a, C. Hu, S. Guo, L. Zhang, M. Wang, J. Peng, L. Xu, J. Wang, Sulfur-vacancy-enriched MoS2 nanosheets based heterostructures for near-infrared optoelectronic NO2 sensing. ACS Appl. Nano Mater. 3, 665–673 (2020). https://doi.org/10.1021/acsanm.9b02180

    Article  CAS  Google Scholar 

  45. L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, D. Voiry, Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 13, 6824–6834 (2019). https://doi.org/10.1021/acsnano.9b01583

    Article  CAS  Google Scholar 

  46. Q. Zhu, W. Chen, H. Cheng, Z. Lu, H. Pan, WS2 Nanosheets with highly-enhanced electrochemical activity by facile control of sulfur cacancies. ChemCatChem 11, 2667–2675 (2019). https://doi.org/10.1002/cctc.201900341

    Article  CAS  Google Scholar 

  47. L. Feng, J. Su, S. Chen, Z. Liu, First-principles investigations on vacancy formation and electronic structures of monolayer MoS2. Mater. Chem. Phys. 148, 5–9 (2014). https://doi.org/10.1016/j.matchemphys.2014.07.026

    Article  CAS  Google Scholar 

  48. J. Wei, Z. Ma, H. Zeng, Z. Wang, Q. Wei, P. Peng, Electronic and optical properties of vacancy-doped WS2 monolayers. AIP Adv. 2, 042141 (2012). https://doi.org/10.1063/1.4768261

    Article  CAS  Google Scholar 

  49. I.S. Kim, V.K. Sangwan, D. Jariwala, J.D. Wood, S. Park, K.-S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V.P. Dravid, T.J. Marks, M.C. Hersam, L.J. Lauhon, Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 8, 10551–10558 (2014). https://doi.org/10.1021/nn503988x

    Article  CAS  Google Scholar 

  50. J. Yang, F. Bussolotti, H. Kawai, K.E.J. Goh, Tuning the conductivity type in monolayer WS2 and MoS2 by sulfur vacancies. Phys. Status Solidi RRL 14, 2000248 (2020). https://doi.org/10.1002/pssr.202000248

    Article  CAS  Google Scholar 

  51. W. Kim, G. Kwak, M. Jung, S.K. Jo, J.B. Miller, A.J. Gellman, K. Yong, Surface and internal reactions of ZnO nanowires: Etching and bulk defect passivation by H atoms. J. Phys. Chem. C 116, 16093–16097 (2012). https://doi.org/10.1021/jp304191m

    Article  CAS  Google Scholar 

  52. X. Zheng, A. Calò, T. Cao, X. Liu, Z. Huang, P.M. Das, M. Drndic, E. Albisetti, F. Lavini, T.-D. Li, V. Narang, W.P. King, J.W. Harrold, M. Vittadello, C. Aruta, D. Shahrjerdi, E. Riedo, Spatial defects nanoengineering for bipolar conductivity in MoS2. Nat. Commun. 11, 3463 (2020). https://doi.org/10.1038/s41467-020-17241-1

    Article  CAS  Google Scholar 

  53. E. German, R. Gebauer, Why are MoS2 monolayers not a good catalyst for the oxygen evolution reaction? Appl. Surf. Sci. 528, 146591 (2020). https://doi.org/10.1016/j.apsusc.2020.146591

    Article  CAS  Google Scholar 

  54. F.M. Pesci, M.S. Sokolikova, C. Grotta, P.C. Sherrell, F. Reale, K. Sharda, N. Ni, P. Palczynski, C. Mattevi, MoS2/WS2 heterojunction for photoelectrochemical water oxidation. ACS Catal. 7, 4990–4998 (2017). https://doi.org/10.1021/acscatal.7b01517

    Article  CAS  Google Scholar 

  55. H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016). https://doi.org/10.1038/nmat4465

    Article  CAS  Google Scholar 

  56. S. Piskunov, O. Lisovski, Y.F. Zhukovskii, P.N. D’yachkov, R.A. Evarestov, S. Kenmoe, E. Spohr, First-principles evaluation of the morphology of WS2 nanotubes for application as visible-light-driven water-splitting photocatalysts. ACS Omega 4, 1434–1442 (2019). https://doi.org/10.1021/acsomega.8b03121

    Article  CAS  Google Scholar 

  57. L. Lin, N. Miao, J. Huang, S. Zhang, Y. Zhu, D.D. Horsell, P. Ghosez, Z. Sun, D.A. Allwood, A photocatalyst of sulphur depleted monolayered molybdenum sulfide nanocrystals for dye degradation and hydrogen evolution reaction. Nano Energy 38, 544–552 (2017). https://doi.org/10.1016/j.nanoen.2017.06.008

    Article  CAS  Google Scholar 

  58. X. Hou, T. Shi, C. Wei, H. Zeng, X. Hu, B. Yan, A 2D-2D heterojunction Bi2WO6/WS2-x as a broad-spectrum bactericide: Sulfur vacancies mediate the interface interactions between biology and nanomaterials. Biomaterials 243, 119937 (2020). https://doi.org/10.1016/j.biomaterials.2020.119937

    Article  CAS  Google Scholar 

  59. A.J. Meier, A. Garg, B. Sutter, J.N. Kuhn, V.R. Bhethanabotla, MoS2 nanoflowers as a gateway for solar-driven CO2 photoreduction. ACS Sustain. Chem. Eng. 7, 265–275 (2019). https://doi.org/10.1021/acssuschemeng.8b03168

    Article  CAS  Google Scholar 

  60. B. Sun, Z. Liang, Y. Qian, X. Xu, Y. Han, J. Tian, Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS. ACS Appl. Mater. Interfaces 12, 7257–7269 (2020). https://doi.org/10.1021/acsami.9b20767

    Article  CAS  Google Scholar 

  61. H. Sun, T. Wu, Y. Zhang, D.H.L. Ng, G. Wang, Structure-enhanced removal of Cr (VI) in aqueous solutions using MoS2 ultrathin nanosheets. New J. Chem. 42, 9006–9015 (2018). https://doi.org/10.1039/C8NJ01062E

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurylev, V. (2021). Case Study IV: Defect Engineering of MoS2 and WS2. In: Nanostructured Photocatalyst via Defect Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-81911-8_8

Download citation

Publish with us

Policies and ethics

Navigation