Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 155))

Abstract

Functionally graded structures have shown the perspective of materials in a higher efficient and consistent manner. This study reports a short investigation by concentrating on the flexomagnetic response of a functionally graded piezomagnetic nano-actuator, kee** in mind that the converse magnetic effect is only taken into evaluation. The rule of mixture assuming exponential composition of properties along with the thickness is developed for the ferromagnetic bulk. Nonlocal effects are assigned to the model, respecting Eringen’s hypothesis. The derived equations deserve to be analytically solved. Therefore, numerical results are generated for fully fixed ends. It is denoted that the functionality grading feature of a magnetic nanobeam can magnify the flexomagnetic effect leading to high-performance nanosensors/actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\(\sigma_{xx}\) :

Stress component

\(\tau_{xz}^{{}}\) :

Shear stress

\(\xi_{xxz}\) :

Hyperstress

\(\eta_{xxz}\) :

Hyperstrain

\(\varepsilon_{xx}\) :

Strain component

\(\gamma_{xz}\) :

Shear strain

\(E\) :

Elasticity modulus

\(G\) :

Shear modulus

\(u_{1}\) :

Displacement along x

\(u_{3}\) :

Displacement along z

\(\nu\) :

Poisson's ratio

\(L\) :

Length of the beam

\(b\) :

Width of the beam

\(z\) :

Thickness coordinate

\(h\) :

Thickness of the beam

\(k_{{\text{s}}}\) :

Shear correction factor

\(k\) :

Material property variation

\(I_{z}\) :

Area moment of inertia

\(u\) :

Axial displacement of the mid-plane

\(w\) :

Transverse displacement of the mid-plane

\(\phi\) :

Rotation of beam nodes around the y-axis

\(q_{31}\) :

Component of the third-order piezomagnetic tensor

\(g_{31}\) :

Component of the sixth-order gradient elasticity tensor

\(f_{31}\) :

Component of fourth-order flexomagnetic tensor

\(a_{33}\) :

Component of the second-order magnetic permeability tensor

\(A\) :

Area of the cross section of the beam

\(N_{x}^{{}}\) :

Axial stress resultant

\(M_{x}^{{}}\) :

Moment stress resultant

\(Q_{x}^{{}}\) :

Shear stress resultant

\(T_{xxz}\) :

Hyperstress resultant

\(\psi\) :

Magnetic potential.

References

  • Ahmed Hassan AH, Kurgan N (2020) Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method. Eng Sci Technol Int J 23:788–800

    Google Scholar 

  • Ait Atmane H, Tounsi A, Ahmed Meftah S, Abdesselem Belhadj H (2011) Free vibration behavior of exponential functionally graded beams with varying cross-section. J Vib Control 17:311

    Article  Google Scholar 

  • Ansari R, Sahmani S, Arash B (2010) Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys Lett A 375(1):53–62

    Article  CAS  Google Scholar 

  • Balsing Rajput A, Hazra S, Nath Ghosh N (2013) Synthesis and characterisation of pure single-phase CoFe2O4 nanopowder via a simple aqueous solution-based EDTA-precursor route. J Exp Nanosci 8:629–639

    Article  Google Scholar 

  • Chu L, Dui G, Ju Ch (2018) Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory. Compos Struct 186:39–49

    Article  Google Scholar 

  • Dastjerdi S, Malikan M, Dimitri R, Tornabene F (2021) Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Composite Struct 255:112925

    Google Scholar 

  • Eliseev EA, Morozovska AN, Glinchuk MD, Blinc R (2009) Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys Rev B 79:165433

    Google Scholar 

  • Eliseev EA, Morozovska AN, Khist VV, Polinger V (2019) Effective flexoelectric and flexomagnetic response of ferroics. Elsevier, Netherlands

    Book  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Fahrner W (2005) Nanotechnology and nanoelectronics. Springer, Germany

    Book  Google Scholar 

  • Hadj Mostefa A, Merdaci S, Mahmoudi N (2018) An overview of functionally graded materials “FGM”. Springer, Cham

    Google Scholar 

  • Kabychenkov AF, Lisovskii FV (2019) Flexomagnetic and flexoantiferromagnetic effects in centrosymmetric antiferromagnetic materials. Tech Phys 64:980–983

    Article  CAS  Google Scholar 

  • Karamanli A, Aydogdu M (2020) Bifurcation buckling conditions of FGM plates with different boundaries. Composite Struct 245:112325

    Google Scholar 

  • Liu TJ, Yang F, Yu H, Aizikovich SM (2021) Axisymmetric adhesive contact problem for functionally graded materials coating based on the linear multi-layered model. Mech Based Des Struct Mach 49:41–58

    Article  Google Scholar 

  • Loh GH, Pei E, Harrison D, Monzón MD (2018) An overview of functionally graded additive manufacturing. Addit Manuf 23:34–44

    CAS  Google Scholar 

  • Lu Z-l, Gao P-z, Ma R-x, Xu J, Wang Z-h, Rebrov EV (2016) Structural, magnetic and thermal properties of one-dimensional CoFe2O4 microtubes. J Alloy Compd 665:428–434

    Article  CAS  Google Scholar 

  • Lukashev P, Sabirianov RF (2010) Flexomagnetic effect in frustrated triangular magnetic structures. Phys Rev B 82:094417

    Google Scholar 

  • Mahamood RM, Akinlabi ET, Shukla, M & Pityana, SL 2012, Functionally Graded Material: An overview, London, UK.

    Google Scholar 

  • Malikan M (2017) Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Appl Math Model 48:196–207

    Article  Google Scholar 

  • Malikan M, Eremeyev VA (2020a) A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition. Composite Struct 249:112486

    Google Scholar 

  • Malikan M, Eremeyev VA (2020b) Free vibration of flexomagnetic nanostructured tubes based on stress-driven nonlocal elasticity. Springer Nature, Switzerland

    Google Scholar 

  • Malikan M, Eremeyev VA (2020c) On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube. Math Methods Appl Sci. https://doi.org/10.1002/mma.6758

    Article  Google Scholar 

  • Malikan M, Eremeyev VA (2020d) On the dynamics of a visco–piezo–flexoelectric nanobeam. Symmetry 12(4):643

    Article  CAS  Google Scholar 

  • Malikan M, Eremeyev VA (2021) Flexomagnetic response of buckled piezomagnetic composite nanoplates. Composite Struct 267:113932

    Google Scholar 

  • Malikan M, Uglov NS, Eremeyev VA (2020a) On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures. Int J Eng Sci 157:103395

    Google Scholar 

  • Malikan M, Eremeyev VA, Żur KK (2020b) Effect of axial porosities on flexomagnetic response of in-plane compressed piezomagnetic nanobeams. Symmetry 12:1935

    Article  Google Scholar 

  • Malikan M, Eremeyev VA, Sedighi HM (2020c) Buckling analysis of a non-concentric double-walled carbon nanotube. Acta Mech 231:5007–5020

    Article  Google Scholar 

  • Malikan M, Krasheninnikov M, Eremeyev VA (2020d) Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. Int J Eng Sci 148:103210

    Google Scholar 

  • Malikan M, Wiczenbach T, Eremeyev VA (2021) On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions. Continuum Mech Thermodyn. https://doi.org/10.1007/s00161-021-00971-y

    Article  Google Scholar 

  • Moosavi S, Zakaria S, Chia CH, Gan S, Azahari NA, Kaco H (2017) Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals. Ceram Int 43:7889–7894

    Article  CAS  Google Scholar 

  • Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernández-García MP, Guedes A, Tavares PB, Grenèche J-M, Araújo JP, Freire C (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504

    Article  CAS  Google Scholar 

  • Romano G, Barretta R (2017) Nonlocal elasticity in nanobeams: the stress-driven integral model. Int J Eng Sci 115:14–27

    Article  Google Scholar 

  • Senthil VP, Gajendiran J, Gokul Raj S, Shanmugavel T, Ramesh Kumar G, Parthasaradhi Reddy C (2018) Study of structural and magnetic properties of cobalt ferrite (CoFe2O4) nanostructures. Chem Phys Lett 695:19–23

    Article  CAS  Google Scholar 

  • Skrzat A, Eremeyev VA (2020) On the effective properties of foams in the framework of the couple stress theory. Continuum Mech Thermodyn 32:1779–1801

    Article  Google Scholar 

  • Sidhardh S, Ray MC (2018) Flexomagnetic response of nanostructures. J Appl Phys 124:244101

    Google Scholar 

  • Thanh Tran T, Nguyen P-C, Pham Q-H (2021) Vibration analysis of FGM plates in thermal environment resting on elastic foundation using ES-MITC3 element and prediction of ANN. Case Stud Thermal Eng 24:100852

    Google Scholar 

  • Vasiliev AS, Volkov SS, Belov AA, Litvinchuk SY, Aizikovich SM (2017) Indentation of a hard transversely isotropic functionally graded coating by a conical indenter. Int J Eng Sci 112:63–75

    Article  CAS  Google Scholar 

  • Volkov SS, Vasiliev AS, Aizikovich SM, Mitrin BI (2019) Axisymmetric indentation of an electroelastic piezoelectric half-space with functionally graded piezoelectric coating by a circular punch. Acta Mech 230:1289–1302

    Article  Google Scholar 

  • Zhang N, Zheng S, Chen D (2019) Size-dependent static bending of flexomagnetic nanobeams. J Appl Phys 126:223901

    Google Scholar 

  • Zhang JX, Zeches RJ, He Q, Chu YH, Ramesh R (2012) Nanoscale phase boundaries: a new twist to novel functionalities. Nanoscale 4:6196–6204

    Article  CAS  Google Scholar 

  • Zhou H, Pei Y, Fang D (2014) Magnetic field tunable small-scale mechanical properties of nickel single crystals measured by nanoindentation technique. Sci Rep 4:1–6

    Google Scholar 

Download references

Acknowledgements

V. A. Eremeyev acknowledges the support of the Government of the Russian Federation (contract No. 14.Z50.31.0046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Eremeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malikan, M., Wiczenbach, T., Eremeyev, V.A. (2022). Flexomagneticity in Functionally Graded Nanostructures. In: Altenbach, H., Eremeyev, V.A., Galybin, A., Vasiliev, A. (eds) Advanced Materials Modelling for Mechanical, Medical and Biological Applications. Advanced Structured Materials, vol 155. Springer, Cham. https://doi.org/10.1007/978-3-030-81705-3_17

Download citation

Publish with us

Policies and ethics

Navigation