Non-LAB Bacterial Probiotic

Next-Generation Probiotic, Bacillus Spp., Clostridium butyricum

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

With recent advances in the knowledge of the gut microbiome and its relation to the host, it has been determined that intestinal commensals play critical roles in human health. The definition of “probiotic” states that the microorganism must have health-promoting properties; for this reason, currently many studies are identifying and introducing members of the intestinal microbiome and commensals as next-generation probiotics. The most important next-generation probiotic species are Akkermansia muciniphila, Faecalibacterium prausnitzii, and Bacteroides spp. Several of these are promising for preventing and treating many chronic and metabolic diseases such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), diabetes, obesity, Clostridium butyricum, Crohn’s disease, etc. However, there is a big challenge with viable intestinal delivery as they are oxygen sensitive and need new cultivation and storage methods. In addition, the need for viable intestinal delivery of probiotics got scientists thinking about using Bacillus spp. and Clostridium spp. as naturally encapsulated members of the gut microbiome because of spore formation. Spores are highly resistant to acidity, heat, and chemicals, and they can survive in harsh environments like different gastrointestinal fluids and heat processing in bakery products. They also play roles in human health through immune modulation and secreting beneficial metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6.

    Article  CAS  PubMed  Google Scholar 

  • Balamurugan R, Janardhan HP, George S, Chittaranjan SP, Ramakrishna BS. Bacterial succession in the colon during childhood and adolescence: molecular studies in a southern Indian village. Am J Clin Nutr. 2008;88:1643–7.

    Article  CAS  PubMed  Google Scholar 

  • Belzer C, Chia L, Aalvink S, Chamlagain B, Piironen V, Knol J, de Vos WM. Microbial metabolic networks at the mucus layer lead to diet independent butyrate and vitamin B12 production by intestinal symbionts. MBio. 2017;8(5):770–17.

    Article  Google Scholar 

  • Bodin J, Bølling AK, Becher R, Kuper F, Løvik M, Nygaard UC. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci. 2014;137:311–23.

    Article  CAS  PubMed  Google Scholar 

  • Boudeau J, Glasser AL, Julien S, Colombel JF, Darfeuille-Michaud A. Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent–invasive E. coli strains isolated from patients with Crohn’s disease. Aliment Pharmacol Ther. 2003;18:45–56.

    Article  CAS  PubMed  Google Scholar 

  • Breyner NM, Michon C, de Sousa CS, Vilas Boas PB, Chain F, Azevedo VA, et al. Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-kB pathway. Front Microbiol. 2017;8:114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cani PD, Delzenne NM. Benefits of bariatric surgery: an issue of microbial–host metabolism interactions? Gut. 2011;60:1166–7.

    Article  PubMed  Google Scholar 

  • Caoa J, Yuc Z, Liua W, Zhaoa J, Zhanga H, Zhaia Q. Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. J Funct Foods. 2020;64:103643.

    Article  Google Scholar 

  • Cassir N, Benamar S, La Scola B. Clostridium butyricum: from beneficial to a new emerging pathogen. Clin Microbiol Infect. 2016;22(1):37–45.

    Article  PubMed  Google Scholar 

  • Courvalin P. Antibiotic resistance: the pros and cons of probiotics. Dig Liver Dis. 2006;38:261–5.

    Article  Google Scholar 

  • Curtis MM, Hu Z, Klimko C, Narayanan S, Deberardinis R, Sperandio V. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe. 2014;16(6):759–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutting SM. Bacillus probiotics. Food Microbiol. 2011;28:214–20.

    Article  PubMed  Google Scholar 

  • Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36.

    Article  CAS  PubMed  Google Scholar 

  • Demirci M, Tokman HB, Uysal HK, Demiryas S, Karakullukcu A, Saribas S, Cokugras H, Kocazeybek BS. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol Immunopathol (Madr). 2019;47(4):365–371.

    Google Scholar 

  • Derakhshani H, De Buck J, Mortier R, Barkema HW, Krause DO, Khafipour E. The features of fecal and ileal mucosa-associated microbiota in dairy calves during early infection with Mycobacterium avium subspecies paratuberculosis. Front Microbiol. 2016;7:426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Micr. 2004;54:1469–76.

    Article  CAS  Google Scholar 

  • Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010;1:254–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Derrien M, Van Baarlen P, Hooiveld G, Norin E, Muller M, de Vos WM. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. 2011;2:166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubourg G, Lagier JC, Armougom F, Robert C, Audoly G, Papazian L, et al. High-level colonisation of the human gut by verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents. 2013;41(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  • Elshaghabee FMF, Rokanaet N, Gulhane RD, Sharma C, Panwar H. Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol. 2017;8:1490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Escobar JS, Klotz B, Valdes BE, Agudelo GM. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 2014;14(1).

    Google Scholar 

  • European Commission. Commission implementing decision of 11 December 2014 authorising the placing on the market of Clostridium butyricum (CBM 588) as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council, vol. 57. OJEU; 2014. p. 153.

    Google Scholar 

  • Food and Agriculture Organization. WHO probiotics in food: health and nutritional properties and guidelines for evaluation. Rome: FAO; 2006.

    Google Scholar 

  • Fu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr. 2019;59:130–52.

    Article  Google Scholar 

  • Fukushima A, Aizaki Y, Sakuma K. Short-chain fatty acids induce intestinal transient receptor potential vanilloid type 6 expression in rats and Caco-2 cells. J Nutr. 2009;139:20–5.

    Article  CAS  PubMed  Google Scholar 

  • Furuichi K, Hojo K, Katakura Y, Ninomiya K, Shioya S. Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone. J Biosci Bioeng. 2006;101:464–70.

    Article  CAS  PubMed  Google Scholar 

  • Galeska M, Szachta P, Bartnicka A, Lykowska-Szuber L, Eder P, Schwiertz A. Faecalibacterium prausnitzii and Crohn’s disease – is there any connection? Pol J Microbiol. 2013;62(1):91–5.

    Article  Google Scholar 

  • Gaudier E, Jarry A, Blottie’re HM, de Coppet P, Buisine MP, Aubert JP, Laboisse C, Cherbut C, Hoebler C. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. AJP Gastrointest Liver Physiol. 2005;287(6):1168–74.

    Article  Google Scholar 

  • GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

  • Ghelardi E, Celandroni F, Salvetti S, Gueye SA, Lupetti A, Senesi S. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. J Appl Microbiol. 2015;119:559–99.

    Article  Google Scholar 

  • Ghoddusi HB, Sherburn R. Preliminary study on the isolation of Clostridium butyricum strains from natural sources in the UK and screening the isolates for presence of the type E botulinal toxin gene. Int J Food Microbiol. 2010;142(1–2):202–6.

    Article  CAS  PubMed  Google Scholar 

  • Gratz S, Mykkanen H, El-Nezami H. Aflatoxin B1 binding by a mixture of Lactobacillus and Propionibacterium: in vitro versus ex vivo. J Food Prot. 2005;68(11):2470–4.

    Article  CAS  PubMed  Google Scholar 

  • Guidi-Rontani C, Weber-Levy M, Labruyère E, Mock M. Germination of Bacillus anthracis spores within alveolar macrophages. Mol Microbiol. 1999;31:9–17.

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol. 2020;11(1):1–10.

    Article  Google Scholar 

  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104–19.

    Article  CAS  PubMed  Google Scholar 

  • Haro C, Garcia-Carpintero S, Alcala-Diaz JF, Gomez-Delgado F, Delgado-Lista J, Perez-Martinez P, et al. The gut microbial community in metabolic syndrome patients is modified by. J Nutr Biochem. 2016;27:27–31.

    Article  CAS  PubMed  Google Scholar 

  • He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 2020;21:6356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoa NT, Baccigalupi L, Huxham A, Smertenko A, Van PH, Ammendola S, Ricca E, Cutting SM. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl Environ Microbiol. 2000;66:5241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol. 2003;69:4320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Kotula L, Adams MC. The in vivo assessment of safety and gastrointestinal survival of an orally administered novel probiotic, Propionibacterium jensenii 702, in a male Wistar rat model. Food Chem Toxicol. 2003;41:1781–7.

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Peng XY, Gao B, Wei QL, **ang R, Yuan MG, Xu ZH. The effect of Clostridium butyricum on gut microbiota, immune response and intestinal barrier function during the development of necrotic enteritis in chickens. Front Microbiol. 2021;12.

    Google Scholar 

  • Hugenholtz J, Hunik J, Santos H, Smid E. Nutraceutical production by Propionibacteria. Lait. 2002;82:103–12.

    Article  CAS  Google Scholar 

  • Jan G, Rouault A, Maubois JL. Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii. Lait. 2000;80:325–36.

    Article  CAS  Google Scholar 

  • Kashiwagi I, Hayashi A, Kanai T, Yoshimura A. Smad2 and Smad3 inversely regulate TGF-b autoinduction in Clostridium butyricum-activated dendritic cells. Cytokine. 2015;76(1):82.

    Article  Google Scholar 

  • Kawade Y, Sakai M, Okamori M, Morita M, Mizushima K, Ueda, et al. Administration of live, but not inactivated, Faecalibacterium prausnitzii has a preventive effect on dextran sodium sulfate-induced colitis in mice. Mol Med Rep. 2019;20:25–32.

    CAS  PubMed  Google Scholar 

  • Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.

    Article  CAS  PubMed  Google Scholar 

  • Konuray G, Erginkaya Z. Potential use of Bacillus coagulans in the food industry. Foods. 2018;7(6):92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, de Vos WM. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krammer JH, Kamper H, von Bunan R, et al. Probiotic drug therapy with E. coli strain Nissle 1917 (EcN): results of a prospective study of the records of 3,807 patients. Gastroenterology. 2006;44:651–6.

    CAS  Google Scholar 

  • Laniro G, Rizzatti G, Plomer M, Lopetuso L, Scaldaferri F, Franceschi F. Bacillus clausii for the treatment of acute diarrhea in children: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2018;10:1074.

    Article  Google Scholar 

  • Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC, et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio. 2014;5:01438–14.

    Article  Google Scholar 

  • Madempudi RS, Kalle AM. Antiproliferative effects of Bacillus coagulans Unique IS2 in colon cancer cells. Nutr Cancer. 2017;69(7):1062–8.

    Article  CAS  PubMed  Google Scholar 

  • Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, Lebrilla CB, Weimer BC, Mills DA, German JB, Sonnenburg JL. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10(5):507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S, et al. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. MBio. 2015;6:00300–15.

    Article  Google Scholar 

  • Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Myllyluoma E, Ahonen AM, Korpela R, Vapaatalo H, Kankuri E. Effects of multispecies probiotic combination on Helicobacter pylori infection in vitro. Clin Vaccine Immunol. 2008;15:1472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottman N, Reunanen J, Meijerink M, Pietila TE, Kainulainen V, Klievink J, Huuskonen L, Aalvink S, Skurnik M, Boeren S, et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One. 2017;12:0173004.

    Article  Google Scholar 

  • Ouwerkerk JP, van der Ark KCH, Davids M, Claassens NJ, Finestra TR, de Vos WM, et al. Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer. Appl Environ Microbiol. 2016;82(23):6983–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahumunto N, Dahlen G, Teanpaisan R. Evaluation of potential probiotic properties of Lactobacillus and Bacillus strains derived from various sources for their potential use in swine feeding. Probiotics Antimicrob Proteins. 2021:1–12.

    Google Scholar 

  • Pereira SP, Bain IM, Kumar D, Dowling RH. Bile composition in inflammatory bowel disease: ileal disease and colectomy, but not colitis, induce lithogenic bile. Aliment Pharmacol Ther. 2003;17:923–33.

    Article  CAS  PubMed  Google Scholar 

  • Perez Chaia A, Zarate G, Oliver G. The probiotic properties of Propionibacteria. Lait. 1999;79:175–1.

    Google Scholar 

  • Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 2013;1(3).

    Google Scholar 

  • Pigneur B, Sokol H. Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail. Mucosal Immunol. 2016;9:1360–5.

    Article  CAS  PubMed  Google Scholar 

  • Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  • Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin TH. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–8.

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Weiss AA. Probiotic properties of Escherichia coli Nissle in human intestinal organoids. MBio. 2020;11(4).

    Google Scholar 

  • Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H, de Vos WM, Satokari R. Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Appl Environ Microbiol. 2015;81(11):3655–62.

    Google Scholar 

  • Rodriguez C, Taminiau B, Brevers B, Avesani V, Van Broeck J, Leroux A, et al. Faecal microbiota characterisation of horses using 16 rDNA barcoded pyrosequencing, and carriage rate of Clostridium difficile at hospital admission. BMC Microbiol. 2015;15(1):181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roszkowski W, Roszkowski K, Ko HL, Beuth J, Jeljaszewicz J. Immunomodulation by Propionibacteria. Zentralbl Bakteriol. 1990;274:289–98.

    Article  CAS  PubMed  Google Scholar 

  • Roychowdhury S, Cadnum J, Glueck B, Obrenovich M, Donskey C, Cresci GAM. Faecalibacterium prausnitzii and a prebiotic protect intestinal health in a mouse model of antibiotic and Clostridium difficile exposure. J Parenter Enter Nutr. 2018;00:1–12.

    Google Scholar 

  • Salyers A, Vercellotti J, West S, Wilkins T. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol. 1977;33:319–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez E, De Palma G, Capilla A, Nova E, Pozo T, Castillejo G, et al. Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl Environ Microbiol. 2011;77(15):5316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Sasaki D, Inoue J, Hoshi N, Maeda T, Yamada R, Kondo A. Bacillus coagulans SANK 70258 suppresses Enterobacteriaceae in the microbiota of ulcerative colitis in vitro and enhances butyrogenesis in healthy microbiota. Appl Microbiol Biotechnol. 2020.

    Google Scholar 

  • Schneeberger M, Everard A, Gómez-Valadés AG, Matamoros S, Ramírez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, Kurata S. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatr Int. 2003;45(1):86–90.

    Article  PubMed  Google Scholar 

  • Shin DS, Eom YB. Antimicrobial and antibiofilm activities of Clostridium butyricum supernatant against Acinetobacter baumannii. Arch Microbiol. 2020;202(5):1059–68.

    Article  CAS  PubMed  Google Scholar 

  • Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;25:1183–9.

    Article  Google Scholar 

  • Somkuti GA, Johnson TL. Cholesterol uptake by Propionibacterium freudenreichii. Curr Microbiol. 1990;20:305–9.

    Article  CAS  Google Scholar 

  • Song H, Yoo Y, Hwang J, Na Y, Kim HS. Faecalibacterium prausnitzii subspecies–level dysbiosis in the human gut microbiome underlying atopic dermatitis. J Allergy Clin Immunol. 2015.

    Google Scholar 

  • Sonnenborn U. Escherichia coli strain Nissle 1917 – from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett. 2016;363(19).

    Google Scholar 

  • Sonoyama K, Fujiwara R, Takemura N, Ogasawara T, Watanabe J, Ito H, Morita T. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl Environ Microbiol. 2009;75:6451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeva MK, Garcia-So J, Justice N, Myers J, Tyagi S, Nemchek M, McMurdie PJ, Kolterman O, Eid J. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes. 2021;13(1):1907272.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumi H, Yatagai C, Wada H, Yoshida E, Maruyama M. Effect of Bacillus natto-fermented product (BIOZYME) on blood alcohol, aldehyde concentrations after whisky drinking in human volunteers, and acute toxicity of acetaldehyde in mice. Arukoru Kenkyu to Yakubutsu Izon. 1995;30(2):69–79.

    CAS  PubMed  Google Scholar 

  • Suva MA, Sureja VP, Kheni DB. Novel insight on probiotic Bacillus subtilis: mechanism of action and clinical applications. J Curr Res Sci Med. 2016;2:65–72.

    Article  Google Scholar 

  • Swidsinski A, Dorffel Y, Loening-Baucke V, Theissig F, Ruckert JC, Ismail M, et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut. 2011;60:34–40.

    Article  PubMed  Google Scholar 

  • Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Kamiya S. Studies of the effect of Clostridium butyricum on Helicobacter pylori in several test models including gnotobiotic mice. J Med Microbiol. 2000;49(7):635–42.

    Article  PubMed  Google Scholar 

  • Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Komatsu A, Kamiya S. The effect of probiotic treatment with Clostridium butyricumon enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol Med Microbiol. 2004;41:219–26.

    Article  CAS  PubMed  Google Scholar 

  • Tan HZ, Zhai QX, Chen W. Investigations of Bacteroides spp. towards next-generation probiotics. Food Res Int. 2018;116:637–44.

    Article  PubMed  Google Scholar 

  • Thirabunyanon M, Thongwittaya N. Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella enteritidis infection. Res Vet Sci. 2012;93:74–81.

    Article  CAS  PubMed  Google Scholar 

  • Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2007;2(12).

    Google Scholar 

  • Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, De Weirdt R, Kerckhof FM, Van de Wiele T. Butyrate producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME. 2013;J 7:949–61.

    Article  Google Scholar 

  • Wang Y, Deng HM, Li ZC, Tan YF, Han YP, Wang XY, et al. Safety evaluation of a novel strain of Bacteroides fragilis. Front Microbiol. 2017:8.

    Google Scholar 

  • Wang S, Wang S, Hou Q, Guo Q, Zhang J, Sun Y, Wei H, Shen L. Isolation and characterization of a deoxynivalenol-degrading bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice. Toxins. 2020;12(3):184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee AL, Maillard MB, Roland N, Chuat V, Leclerc A, Pogacic T, et al. Great interspecies and intraspecies diversity of dairy Propionibacteria in the production of cheese aroma compounds. Int J Food Microbiol. 2014;191:60–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Khomeiri .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khomeiri, M., Taheri, S., Nasrollahzadeh, A. (2023). Non-LAB Bacterial Probiotic. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation