Vitamin D

Chemical Composition, Sources, Delivery, and Uses

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Vitamin D is one of the fat-soluble vitamins responsible for numerous functions in the human body, the insufficiency and adequacy of which is a common problem worldwide. The synthesis of vitamin D is dependent on the level of melanin level in the body, and it varies from person to person, as well as from place to place based on the equator line. Calcium and phosphate levels in the body play an important role in the regulation of this vitamin. This fat-soluble vitamin resembles sterols in structure and acts as a hormone, which performs various metabolic functions in various forms. A recent meta-analysis showed some positive effects of vitamin D in the treatment of COVID-19, besides its health-promoting properties for obesity and cancer. The paracrine role of vitamin D helps the cell through an antiproliferative activity where the influence of various gene actions is involved. Treatment or supplementation of vitamin D can be more efficiently done through nanoencapsulation of all forms of this vitamin along with a personalized tailor-made diet. The encapsulated vitamin can also be incorporated into various food models to deliver efficient doses of vitamin D via functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas KA, Saleh AM, Mohamed A, MohdAzhan N. The recent advances in nanotechnology and its applications in food processing: a review. J Food Agric Environ. 2009;7(3–4):14–7.

    Google Scholar 

  • Abbas MA. Physiological functions of Vitamin D in adipose tissue. The Journal of steroid biochemistry and molecular biology. 2017;165:369–81.

    Google Scholar 

  • Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health. 2020;13(10):1373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazana MT, Codevilla CF, de Menezes CR. Nanoencapsulation of bioactive compounds: challenges and perspectives. Curr Opin Food Sci. 2019;26:47–56.

    Article  Google Scholar 

  • Benedik E. Sources of vitamin D for humans. Int J Vitam Nutr Res. 2021;92:118–25.

    Article  PubMed  Google Scholar 

  • Bhanot D. Nutrigenomics: an emerging science. NEWMAN.

    Google Scholar 

  • Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bikle DD. Vitamin D: production, metabolism and mechanisms of action. Endotext [Internet]. 2021;31.

    Google Scholar 

  • Bouillon R, Carmeliet G, Lieben L, Watanabe M, Perino A, Auwerx J, Schoonjans K, Verstuyf A. Vitamin D and energy homeostasis – of mice and men. Nat Rev Endocrinol. 2014;10(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  • Bratovcic A, Suljagic J. Micro-and nano-encapsulation in the food industry. Croat J Food Sci Technol. 2019;11(1):113–21.

    Article  Google Scholar 

  • Carlberg C. Nutrigenomics of vitamin D. Nutrients. 2019;11(3):676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemat F, Abert Vian M, Fabiano-Tixier A-S, Nutrizio M, Režek Jambrak A, Munekata PE S, Lorenzo JM, Barba FJ, Binello A, Cravotto G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry: An International Journal and Green Chemistry Resource: GC, 2020;22(8):2325–2353. https://doi.org/10.1039/c9gc03878g

  • Christakos S, Ajibade DV, Dhawan P, Fechner AJ, Mady LJ. Vitamin D: metabolism. Rheum Dis Clin. 2012;38(1):1–1.

    Article  Google Scholar 

  • Clausen I, Jakobsen J, Leth T, Ovesen L. Vitamin D3 and 25-hydroxyvitamin D3 in raw and cooked pork cuts. Journal of Food Composition and Analysis. 2003;16(5):575–85.

    Google Scholar 

  • Cesari M, Incalzi RA, Zamboni V, Pahor M. Vitamin D hormone: a multitude of actions potentially influencing the physical function decline in older persons. Geriatrics & gerontology international. 2011;11(2):133–42.

    Google Scholar 

  • Davis CD, Milner JA. Nutrigenomics, vitamin D and cancer prevention. Lifestyle Genomics. 2011;4(1):1.

    Article  CAS  Google Scholar 

  • de Melo AP, da Rosa CG, Noronha CM, Machado MH, Sganzerla WG, da Cunha Bellinati NV, Nunes MR, Verruck S, Prudêncio ES, Barreto PL. Nanoencapsulation of vitamin D3 and fortification in an experimental jelly model of Acca sellowiana: bioaccessibility in a simulated gastrointestinal system. LWT. 2021;145:111287.

    Google Scholar 

  • De Paula FJ, Rosen CJ. Vitamin D safety and requirements. Arch Biochem Biophys. 2012;523(1):64–72.

    Google Scholar 

  • Deng X, Song Y, Manson JE, Signorello LB, Zhang SM, Shrubsole MJ, ... Dai Q. Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med. 2013;11(1):1–14.

    Google Scholar 

  • DRI. Institute of Medicine, Food and Nutrition Board, Dietary Reference Intakes: energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids.

    Google Scholar 

  • Egaas E, Lambertsen G. Naturally occurring vitamin D3 in fish products analysed by HPLC, using vitamin D2 as an international standard. Int J Vitamin Nutr Res. 1979;49(1):35–42.

    CAS  Google Scholar 

  • Eisman JA, Shepard RM, DeLuca HF. Determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human plasma using high-pressure liquid chromatography. Analytical biochemistry. 1977;80(1):298–305.

    Google Scholar 

  • Erem S, Razzaque MS. Benefits of safe sunlight exposure: vitamin D and beyond. J Steroid Biochem Mol Biol. 2021;27:105957.

    Article  Google Scholar 

  • Farhud DD, Yeganeh MZ, Yeganeh MZ. Nutrigenomics and nutrigenetics. Iran J Public Health. 2010;39(4):1.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Ma J, Yan S, Si Q. A meta-analysis of VDR polymorphisms and postmenopausal osteoporosis. Endocr Connect. 2020;9(9):882–9. https://doi.org/10.1007/s00418-018-1648-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallotti F, Lavelli V. The effect of UV irradiation on vitamin d2 content and antioxidant and antiglycation activities of mushrooms. Foods. 2020;9(8):1087. https://doi.org/10.3390/foods9081087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan B, Brothersen C, McMahon DJ. Fortification of Cheddar cheese with vitamin D does not alter cheese flavor perception. J Dairy Sci. 2011;94(7):3708–14.

    Article  CAS  PubMed  Google Scholar 

  • Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB, Holick MF. The role of vitamin D in cancer prevention. Am J Public Health. 2006;96(2):252–61. https://doi.org/10.2105/AJPH.2004.045260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes FP, Shaw PN, Whitfield K, Koorts P, Hewavitharana AK. Recent trends in the determination of vitamin D. Bioanalysis. 2013;5(24):3063–78.

    Article  CAS  PubMed  Google Scholar 

  • Gowthami K, Kalpana Obesity and Vitamin D insufficiency among young women – Prevalence, Association and mHealth intervention. 2022.

    Google Scholar 

  • Grimaldi AS, Parker BA, Capizzi JA, Clarkson PM, Pescatello LS, White CM, Thompson PD. 25 (OH) vitamin D is associated with greater muscle strength in healthy men and women. Med Sci Sports Exerc. 2013;45(1):157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haham M, Ish-Shalom S, Nodelman M, Duek I, Segal E, Kustanovich M, Livney YD. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct. 2012;3(7):737–44.

    Article  CAS  PubMed  Google Scholar 

  • Hanson AL, Metzger LE. Evaluation of increased vitamin D fortification in high-temperature, short-time–processed 2% milk, UHT-processed 2% fat chocolate milk, and low-fat strawberry yogurt. Journal of dairy science. 2010;93(2):801–7.

    Google Scholar 

  • Harinarayan CV. Vitamin D and diabetes mellitus. Hormones. 2014;13(2):163–81.

    Article  PubMed  Google Scholar 

  • Hassan-Smith ZK, Jenkinson C, Smith DJ, Hernandez I, Morgan SA, Crabtree NJ, Gittoes NJ, Keevil BG, Stewart PM, Hewison M. 25-hydroxyvitamin D3 and 1, 25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression. PLoS One. 2017;12(2):e0170665.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes A, Cashman KD. Food-based solutions for vitamin D deficiency: putting policy into practice and the key role for research. Proc Nutr Soc. 2017;76(1):54–63.

    Article  PubMed  Google Scholar 

  • Henry HL. Regulation of vitamin D metabolism. Best Pract Res Clin Endocrinol Metab. 2011;25(4):531–41.

    Article  CAS  PubMed  Google Scholar 

  • Hernigou P, Sitbon J, Dubory A, Auregan JC. Vitamin D history part III: the “modern times” – new questions for orthopaedic practice: deficiency, cell therapy, osteomalacia, fractures, supplementation, infections. Int Orthop. 2019;43(7):1755–71. https://doi.org/10.1007/s00264-019-04334-w.

    Article  PubMed  Google Scholar 

  • Holick MF. The use and interpretation of assays for vitamin D and its metabolites. J Nutr. 1990;120(Suppl 11):1464–9.

    Article  CAS  PubMed  Google Scholar 

  • Holick MF. The vitamin D solution: a 3-step strategy to cure our most common health problems. New York: Penguin; 2010.

    Book  Google Scholar 

  • Holick MF. Vitamin D and bone health. The Journal of nutrition. 1996;126(suppl_4):1159S-64S

    Google Scholar 

  • Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062–72.

    Google Scholar 

  • Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Annals of epidemiology. 2009;19(2):73–8.

    Google Scholar 

  • Holick MF. McCollum Award Lecture, 1994: vitamin D—new horizons for the 21st century. The American journal of clinical nutrition. 1994;60(4):619-30.

    Google Scholar 

  • Horst RL, Reinhardt TA, Reddy GS. Vitamin D metabolism. In: Vitamin D, vol. 1. Burlington: Elsevier; 2005. p. 15–36.

    Chapter  Google Scholar 

  • Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc. 2013;88(7):720–55. Elsevier.

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Wang PW, Alalaiwe A, Lin ZC, Fang JY. Use of lipid nanocarriers to improve oral delivery of vitamins. Nutrients. 2019;11(1):68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res. 2020;32(7):1195–8. https://doi.org/10.1007/s40520-020-01570-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Imazeki I, Matsuzaki J, Tsuji K, Nishimura T. Immunomodulating effect of vitamin D3 derivatives on type-1 cellular immunity. Biomed Res. 2006;27(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  • Indyk H, Littlejohn V, Woollard DC. Stability of vitamin D3 during spray-drying of milk. Food Chem. 1996;57(2):283–6.

    Article  CAS  Google Scholar 

  • Jäpelt RB, Jakobsen J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Frontiers in plant science. 2013;4:136.

    Google Scholar 

  • Jakobsen J, Knuthsen P. Stability of vitamin D in foodstuffs during cooking. Food Chem. 2014;148:170–5. https://doi.org/10.1016/j.foodchem.2013.10.043. Epub 2013 Oct 17.

  • Jungert A, Spinneker A, Nagel A, Neuhäuser-Berthold M. Dietary intake and main food sources of vitamin D as a function of age, sex, vitamin D status, body composition, and income in an elderly German cohort. Food Nutr Res. 2014;58(1):23632.

    Article  Google Scholar 

  • Jüppner H, Thakker R. Genetic disorders of calcium and phosphate homeostasis. Saunders Elsevier Company, Philadelphia, PA. 2008;311–45.

    Google Scholar 

  • Karampela I, Sakelliou A, Vallianou N, Christodoulatos GS, Magkos F, Dalamaga M. Vitamin D and obesity: current evidence and controversies. Curr Obes Rep. 2021;10(2):162–80.

    Article  PubMed  Google Scholar 

  • Kaur KK, Allahbadia G, Singh M. Impact of nutrigenomics on various metabolic disorders in relation to life style alteration. Austin J Nutr Food Sci. 2018;6:1100.

    Google Scholar 

  • Kiani A, Fathi M, Ghasemi SM. Production of novel vitamin D3 loaded lipid nanocapsules for milk fortification. Int J Food Prop. 2017;20(11):2466–76.

    Article  CAS  Google Scholar 

  • Kienreich K, Tomaschitz A, Verheyen N, Pieber T, Gaksch M, Grübler MR, Pilz S. Vitamin D and cardiovascular disease. Nutrients. 2013;5(8):3005–21. https://doi.org/10.3390/nu50830057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King JC, Cousins RJ. Zinc. In: Shilis ME, editor. Modern nutrition in health and disease.

    Google Scholar 

  • Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin Immunol. 2007;19(6):362–71. https://doi.org/10.3390/foods10091989. Academic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeahGroth, a Vitamin D benefits you should know- and how to get more in your diet.

    Google Scholar 

  • Lemire JM, Adams JS, Sakai R, Jordan SC. 1 alpha, 25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest. 1984;74(2):657–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner PP, Sharony L, Miodownik C. Association between mental disorders, cognitive disturbances and vitamin D serum level: current state. Clin Nutr ESPEN. 2018;23:89–102. https://doi.org/10.1016/j.clnesp.2017.11.011.

    Article  PubMed  Google Scholar 

  • Longvah T, Anantan I, Bhaskarachary K, Venkaiah K, Longvah T. Indian food composition tables. Hyderabad: National Institute of Nutrition, Indian Council of Medical Research; 2017.

    Google Scholar 

  • Lu Z, Chen TC, Zhang A, Persons KS, Kohn N, Berkowitz R, Martinello S, Holick MF. An evaluation of the vitamin D3 content in fish: is the vitamin D content adequate to satisfy the dietary requirement for vitamin D? J Steroid Biochem Mol Biol. 2007;103(3–5):642–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdi Jafari S, Masoudi S, Bahrami A. A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D3. Dry Technol. 2019;37(16):2059–71.

    Article  Google Scholar 

  • Mahmood KS. Nutrigenomics: an overview, controversy, promises, and the future of animal nutrition.

    Google Scholar 

  • Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa D, Ginde AA, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattila P, Ronkainen R, Lehikoinen K, Piironen V. Effect of household cooking on the vitamin D content in fish, eggs, and wild mushrooms. J Food Compos Anal. 1999;12(3):153–60.

    Article  CAS  Google Scholar 

  • Maurya VK, Bashir K, Aggarwal M. Vitamin D microencapsulation and fortification: trends and technologies. J Steroid Biochem Mol Biol. 2020;196:105489.

    Article  CAS  PubMed  Google Scholar 

  • McClements DJ, Öztürk B. Utilization of nanotechnology to improve the handling, storage and biocompatibility of bioactive lipids in food applications. Foods. 2021;10:365.

    Google Scholar 

  • McCollum EV, Simmonds N, Pitz W. The relation of the unidentified dietary factors, the fat-soluble a, and water soluble b, of the diet to the growth promoting properties of milk. J Biol Chem. 1916;27(1):33–43.

    Article  CAS  Google Scholar 

  • Mohammadi M, Ghanbarzadeh B, Hamishehkar H. Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification. Adv Pharm Bull. 2014;4(Suppl 2):569.

    PubMed  PubMed Central  Google Scholar 

  • Montgomery JL, King MB, Gentry JG, Barham AR, Barham BL, Hilton GG, Blanton JR Jr, Horst RL, Galyean ML, Morrow KJ Jr, Wester DB. Supplemental vitamin D3 concentration and biological type of steers. II. Tenderness, quality, and residues of beef. J Anim Sci. 2004;82(7):2092–104.

    Article  CAS  PubMed  Google Scholar 

  • Narvaez CJ, Matthews D, LaPorta E, Simmons KM, Beaudin S, Welsh J. The impact of vitamin D in breast cancer: genomics, pathways, metabolism. Front Physiol. 2014;5:213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair R, Maseeh A. Vitamin D: The sunshine vitamin. J Pharmacol Pharmacother. 2012;3(2):118–26.

    Google Scholar 

  • Neumeister A, Konstantinidis A, Praschak-Rieder N, Willeit M, Hilger E, Stastny J, Kasper S. Monoaminergic function in the pathogenesis of seasonal affective disorder. Int J Neuropsychopharmacol. 2001;4(4):409–20.

    Article  CAS  PubMed  Google Scholar 

  • Newmark HL, Lipkin M. Calcium, vitamin D, and colon cancer. Cancer Res. 1992;52(7 Suppl):2067s–70s.

    CAS  PubMed  Google Scholar 

  • Norman AW. The history of the discovery of vitamin D and its daughter steroid hormone. Ann Nutr Metab. 2012;61(3):199–206.

    Google Scholar 

  • O’riordan JL, Bijvoet OL. Rickets before the discovery of vitamin D. BoneKEy reports. 2014;3.

    Google Scholar 

  • Onwulata CI. Microencapsulation and functional bioactive foods. J Food Process Preserv. 2013;37(5):510–32.

    Article  CAS  Google Scholar 

  • Olsson K, Saini A, Strömberg A, Alam S, Lilja M, Rullman E, Gustafsson T. Evidence for vitamin D receptor expression and direct effects of 1α, 25 (OH) 2D3 in human skeletal muscle precursor cells. Endocrinology. 2016;157(1):98–111.

    Google Scholar 

  • Pal A. Nutrigenomics. In: Protocols in advanced genomics and allied techniques. New York: Springer; 2022. p. 559–69.

    Chapter  Google Scholar 

  • Panfili FM, Roversi M, D’argenio P, Rossi P, Cappa M, Fintini D. Possible role of vitamin D in COVID-19 infection in pediatric population. J Endocrinol Investig. 2021;44(1):27–35. https://doi.org/10.1007/s40618-020-01327-0.

    Article  CAS  Google Scholar 

  • Paredes AJ, Asensio CM, Llabot JM, Allemandi DA, Palma SD. Nanoencapsulation in the food industry: manufacture, applications and characterization. J Food Bioeng Nanoprocess. 2016;1(1):56–79.

    Google Scholar 

  • Pertile RA, Cui X, Eyles DW. Vitamin D signaling and the differentiation of develo** dopamine systems. Neuroscience. 2016;333:193–203.

    Article  CAS  PubMed  Google Scholar 

  • Phillips KM, Horst RL, Koszewski NJ, Simon RR. Correction: vitamin D4 in mushrooms. PLoS One. 2021;16(6):e0253992.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pittas AG, Dawson-Hughes B, Li T, Van Dam RM, Willett WC, Manson JE, Hu FB. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care. 2006;29(3):650–6.

    Article  CAS  PubMed  Google Scholar 

  • Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. The Journal of Clinical Endocrinology & Metabolism, 2011;96(1):53–58.

    Google Scholar 

  • Savastano S, Barrea L, Savanelli MC, Nappi F, Di Somma C, Orio F, Colao A. Low vitamin D status and obesity: role of nutritionist. Rev Endocr Metab Dis. 2017;18(2):215–25. https://doi.org/10.1007/s11154-017-9410-7.

    Article  CAS  Google Scholar 

  • Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, Marchler-Bauer A. Database resources of the national center for biotechnology information. Nucleic acids research. 2021;49(D1):D10.

    Google Scholar 

  • Schmid A, Walther B. Natural vitamin D content in animal products. Advances in nutrition. 2013;4(4):453–62.

    Google Scholar 

  • Semo E, Kesselman E, Danino D, Livney YD. Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll. 2007;21(5–6):936–42.

    Article  CAS  Google Scholar 

  • Sempos CT, Heijboer AC, Bikle DD, Bollerslev J, Bouillon R, Brannon PM, DeLuca HF, Jones G, Munns CF, Bilezikian JP, Giustina A. Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. Br J Clin Pharmacol. 2018;84(10):2194–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshadri KG, Tamilselvan B, Rajendran A. Role of vitamin D in diabetes. J Endocrinol Metab. 2011;1(2):47–56.

    CAS  Google Scholar 

  • Silva MC, Furlanetto TW. Intestinal absorption of vitamin D: a systematic review. Nutr Rev. 2018;76(1):60–76.

    Article  PubMed  Google Scholar 

  • Sing T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA. Corrigendum: application of nanotechnology in food science: perception and overview. Front Microbiol. 2017;8:2517.

    Google Scholar 

  • Sirajudeen S, Shah I, Al Menhali A. A narrative role of vitamin D and its receptor: with current evidence on the gastric tissues. International journal of molecular sciences. 2019;20(15):3832.

    Google Scholar 

  • Stein SH. Vitamin D and its impact on oral health – an update. Tenn Dent Assoc. 2011;91(2):30–3; quiz 34–5, 9. 2006;29(3):650–6. https://doi.org/10.2337/diacare.29.03.06.dc05-1961.

  • Steinberg CE. Vitamin D – ‘Keep the Orthopedist Away! In: Aquatic animal nutrition. Cham: Springer; 2022. p. 909–26.

    Chapter  Google Scholar 

  • Stumpf WE, Privette TH. Light, vitamin D and psychiatry. Psychopharmacology. 1989;97(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  • Suganya V, Anuradha V. Microencapsulation and nanoencapsulation: a review. Int J Pharm Clin Res. 2017;9(3):233–9.

    Google Scholar 

  • Tahir A, Shabir Ahmad R, Imran M, Ahmad MH, Kamran Khan M, Muhammad N, Nisa MU, Tahir Nadeem M, Yasmin A, Tahir HS, Zulifqar A. Recent approaches for utilization of food components as nano-encapsulation: a review. Int J Food Prop. 2021;24(1):1074–96.

    Article  CAS  Google Scholar 

  • Tangpricha V. Vitamin D in food and supplements. Am J Clin Nutr. 2012;95(6):1299–300. https://doi.org/10.3945/ajcn.112.039818.

    Article  CAS  PubMed  Google Scholar 

  • Taylor CL, Patterson KY, Roseland JM, Wise SA, Merkel JM, Pehrsson PR, Yetley EA. Including food 25-hydroxyvitamin D in intake estimates may reduce the discrepancy between dietary and serum measures of vitamin D status. J Nutr. 2014;144(5):654–9. https://doi.org/10.3945/jn.113.189811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. (Commentary). Journal of the american dietetic association. 2002;102(11):1621–31.

    Google Scholar 

  • Trump DL, Aragon-Ching JB. Vitamin D in prostate cancer. Asian J Androl. 2018;20(3):244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanlint S. Vitamin D and obesity. Nutrients. 2013;5(3):949–56. https://doi.org/10.3390/nu5030949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Dermato-endocrinology. 2013;5(1):51–108.

    Google Scholar 

  • Walia N, Dasgupta N, Ranjan S, Chen L, Ramalingam C. Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem. 2017;39:623–35.

    Article  CAS  PubMed  Google Scholar 

  • Wolpowitz D, Gilchrest BA. The vitamin D questions: how much do you need and how should you get it? J Am Acad Dermatol. 2006;54(2):301–17.

    Article  PubMed  Google Scholar 

  • Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.

    Article  CAS  PubMed  Google Scholar 

  • Wintermeyer E, Ihle C, Ehnert S, Stöckle U, Ochs G, De Zwart P, Flesch I, Bahrs C, Nussler AK. Crucial role of vitamin D in the musculoskeletal system. Nutrients. 2016;8(6):319.

    Google Scholar 

  • Zakharova I, Klimov L, Kuryaninova V, Nikitina I, Malyavskaya S, Dolbnya S, Kasyanova A, Atanesyan R, Stoyan M, Todieva A, Kostrova G. Vitamin D insufficiency in overweight and obese children and adolescents. Front Endocrinol. 2019;10:103.

    Google Scholar 

  • Zhang M, Shen F, Petryk A, Tang J, Chen X, Sergi C. English Disease: Historical notes on rickets, the bone–lung link and child neglect issues. Nutrients. 2016;8(11):722.

    Google Scholar 

  • Zareie M, Abbasi A, Faghih S. Influence of storage conditions on the stability of vitamin D3 and kinetic study of the vitamin degradation in fortified canola oil during the storage. Journal of Food Quality. 2021;2021:1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnappan A. Kalpana .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kalpana, C.A., Babita Devi, N., Ghosh, S., Rashidinejad, A. (2023). Vitamin D. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_23-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_23-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Vitamin D
    Published:
    09 July 2023

    DOI: https://doi.org/10.1007/978-3-030-81404-5_23-2

  2. Original

    Vitamin D
    Published:
    30 June 2023

    DOI: https://doi.org/10.1007/978-3-030-81404-5_23-1

Navigation