Tailoring 3D Biomaterials for Spinal Cord Injury Repair

  • Chapter
  • First Online:
Engineering Biomaterials for Neural Applications

Abstract

Spinal cord injury (SCI), with either traumatic or non-traumatic aetiology, brings lifetime health, economic and social consequences to thousands of people worldwide. Tragically, there are no available therapies capable of reversing the condition of SCI patients, who experience their daily routines becoming nearly impossible tasks due to the abrupt decrease in their mobility and independence. During the last decades, biomaterials have continuously been tested as central players for a wide range of SCI regenerative strategies, particularly the development of highly biocompatible 3D tissue-engineered scaffolds proficient to bridge the lesion site. Importantly, the clinical success of such constructs deeply relies on the generation of functional neural circuits that resemble the spinal cord network. In this chapter, we overview the most promising methodologies for tailoring biomaterials towards the recreation of biochemical and biomechanical gradients capable of boosting neural cell responses in vitro and in vivo. Relevant research topics regarding scaffolding approaches such as microfabrication techniques and some functionalization strategies are presented and critically discussed. Furthermore, decisive parameters commonly used to assess the biocompatibility of biomaterials for SCI repair are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 179.34
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  CAS  PubMed  Google Scholar 

  2. Fan C, Li X, **ao Z et al. (2017) A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater 51:304–316

    Article  CAS  PubMed  Google Scholar 

  3. Oudega M, Hao P, Shang J et al. (2019) Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Exp Neurol 312:51–62

    Article  CAS  PubMed  Google Scholar 

  4. Wen Y, Yu S, Wu Y et al. (2016) Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell Tissue Res 364:17–28

    Article  CAS  PubMed  Google Scholar 

  5. Grulova I, Slovinska L, Blaško J et al. (2015) Delivery of alginate scaffold releasing two trophic factors for spinal cord injury repair. Sci Rep 5:13702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shahriari D, Koffler JY, Tuszynski MH et al. (2017) Hierarchically ordered porous and high-volume polycaprolactone microchannel scaffolds enhanced axon growth in transected spinal cords. Tissue Eng Part A 23:415–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reis KP, Sperling LE, Teixeira C et al. (2018) Application of PLGA/FGF-2 coaxial microfibers in spinal cord tissue engineering: an in vitro and in vivo investigation. Regen Med 13:785–801

    Article  CAS  PubMed  Google Scholar 

  8. Kubinová S, Horák D, Hejčl A et al. (2011) Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. J Biomed Mater Res A 99:618–629

    Article  PubMed  Google Scholar 

  9. Lu YB, Franze K, Seifert G et al. (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci USA 103:17759–17764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Domínguez-Bajo A, González-Mayorga A, Guerrero CR et al. (2019) Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats. Biomaterials 192:461–474

    Article  PubMed  Google Scholar 

  11. Moeendarbary E, Weber IP, Sheridan GK et al. (2017) The soft mechanical signature of glial scars in the central nervous system. Nat Commun 8:14787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamada KM, Sixt M (2019) Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 20:738–752

    Article  CAS  PubMed  Google Scholar 

  13. Duval K, Grover H, Han LH et al. (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 32:266–277

    CAS  Google Scholar 

  14. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  15. Koffler J, Zhu W, Qu X et al. (2019) Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 25:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Usmani S, Aurand ER, Medelin M et al. (2016) 3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants. Sci Adv 2:e1600087

    Article  PubMed  PubMed Central  Google Scholar 

  17. Alves-Sampaio A, García-Rama C, Collazos-Castro JE (2016) Biofunctionalized PEDOT-coated microfibers for the treatment of spinal cord injury. Biomaterials 89:98–113

    Article  CAS  PubMed  Google Scholar 

  18. Raynald, Shu B, Liu XB et al. (2019) Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats. CNS Neurosci Ther 25:951–964

    Article  CAS  PubMed  Google Scholar 

  19. Yao S, Yu S, Cao Z et al. (2018) Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. Int J Nanomedicine 13:2883–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu S, Sun X, Wang T et al. (2018) Nano-fibrous and ladder-like multi-channel nerve conduits: Degradation and modification by gelatin. Mater Sci Eng C 83:130–142

    Article  CAS  Google Scholar 

  21. Liu D, Li X, **ao Z et al. (2019) Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials 214:119230

    Article  CAS  PubMed  Google Scholar 

  22. Nemati S, Kim S-j, Shin YM, Shin H (2019) Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  23. Johnson CDL, Ganguly D, Zuidema JMet al. (2019) Injectable, magnetically orienting electrospun fiber conduits for neuron guidance. ACS Appl Mater Inter 11:356–372

    Google Scholar 

  24. Shu B, Sun X, Liu R et al. (2019) Restoring electrical connection using a conductive biomaterial provides a new therapeutic strategy for rats with spinal cord injury. Neurosci Lett 692:33–40

    Article  CAS  PubMed  Google Scholar 

  25. Colello RJ, Chow WN, Bigbee JW et al. (2016) The incorporation of growth factor and chondroitinase ABC into an electrospun scaffold to promote axon regrowth following spinal cord injury. J Tissue Eng Regen Med 10:656–668

    Article  CAS  PubMed  Google Scholar 

  26. Chen C, Tang J, Gu Y et al. (2019) Bioinspired hydrogel electrospun fibers for spinal cord regeneration. Adv Funct Mater 29:1806899

    Article  Google Scholar 

  27. Hurtado A, Cregg JM, Wang HB et al. (2011) Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers. Biomaterials 32:6068–6079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Omidinia-Anarkoli A, Boesveld S, Tuvshindorj U et al. (2017) An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells. Small 13:1702207

    Article  Google Scholar 

  29. Yang G, Li X, He Y et al. (2018) From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog Polym Sci 81:80–113

    Article  CAS  Google Scholar 

  30. Liu W, Thomopoulos S, **a Y (2012) Electrospun nanofibers for regenerative medicine. Adv Healthc Mater 1:10–25

    Article  CAS  PubMed  Google Scholar 

  31. Rose JC, De Laporte L (2018) Hierarchical design of tissue regenerative constructs. Adv Healthc Mater 7:1701067

    Article  CAS  Google Scholar 

  32. Annabi N, Tamayol A, Uquillas JA et al. (2014) 25th Anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124

    Article  CAS  PubMed  Google Scholar 

  33. Higuchi A, Suresh Kumar S, Benelli G et al. (2019) Biomaterials used in stem cell therapy for spinal cord injury. Prog Mater Sci 103:374–424

    Article  CAS  Google Scholar 

  34. McKay CA, Pomrenke RD, McLane JS et al. (2014) An injectable, calcium responsive composite hydrogel for the treatment of acute spinal cord injury. ACS Appl Mater Inter 6:1424–1438

    Article  CAS  Google Scholar 

  35. Marquardt LM, Doulames VM, Wang AT et al. (2020) Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy. Sci Adv 6:eaaz1039

    Google Scholar 

  36. Hong LTA, Kim YM, Park HH et al. (2017) An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nat Commun 8:533

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Q, He Y, Zhao Y et al. (2017) A thermosensitive heparin-poloxamer hydrogel bridges aFGF to treat spinal cord injury. ACS Appl Mater Inter 9:6725–6745

    Article  CAS  Google Scholar 

  38. Qu Y, Wang B, Chu B et al. (2018) Injectable and thermosensitive hydrogel and PDLLA electrospun nanofiber membrane composites for guided spinal fusion. ACS Appl Mater Inter 10:4462–4470

    Article  CAS  Google Scholar 

  39. Wang C, Yue H, Feng Q et al. (2018) Injectable nanoreinforced shape-memory hydrogel system for regenerating spinal cord tissue from traumatic injury. ACS Appl Mater Inter 10:29299–29307

    Article  CAS  Google Scholar 

  40. Li X, Zhang C, Haggerty AE et al. (2020) The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials 245:119978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Günther MI, Weidner N, Müller R, Blesch A (2015) Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Acta Biomater 27:140–150

    Article  PubMed  Google Scholar 

  42. Fan L, Liu C, Chen X et al. (2018) Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Inter 10:17742–17755

    Article  CAS  Google Scholar 

  43. Scott JB, Afshari M, Kotek R, Saul JM (2011) The promotion of axon extension in vitro using polymer-templated fibrin scaffolds. Biomaterials 32:4830–4839

    Article  CAS  PubMed  Google Scholar 

  44. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  CAS  PubMed  Google Scholar 

  45. Pawelec KM, Husmann A, Best SM, Cameron RE (2014) Ice-templated structures for biomedical tissue repair: From physics to final scaffolds. Appl Phys Rev 1:021301

    Article  Google Scholar 

  46. Kasper JC, Friess W (2011) The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm 78:248–263

    Article  CAS  PubMed  Google Scholar 

  47. Lin W, Lan W, Wu Y et al. (2019) Aligned 3D porous polyurethane scaffolds for biological anisotropic tissue regeneration. Regen Biomater 7:19–27

    PubMed  PubMed Central  Google Scholar 

  48. Francis NL, Hunger PM, Donius AE et al. (2013) An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. J Biomed Mater Res A 101:3493–3503

    Article  PubMed  Google Scholar 

  49. Yuan NY, Lin YA, Ho MH et al. (2009) Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohyd Polym 78:349–356

    Article  CAS  Google Scholar 

  50. Zhang Q, Shi B, Ding J et al. (2019) Polymer scaffolds facilitate spinal cord injury repair. Acta Biomater 88:57–77

    Article  CAS  PubMed  Google Scholar 

  51. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devic 8:607–626

    Article  Google Scholar 

  52. Li X, Liu D, **ao Z (2019) Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 197:20–31

    Article  CAS  PubMed  Google Scholar 

  53. Stokols S, Tuszynski MH (2006) Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27:443–451

    Article  CAS  PubMed  Google Scholar 

  54. Thomas AM, Kubilius MB, Holland SJ et al. (2013) Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury. Biomaterials 34:2213–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sakiyama-Elbert S, Johnson PJ, Hodgetts SI, Plant GW, Harvey AR (2012) Chapter 36—scaffolds to promote spinal cord regeneration. In: Verhaagen J, McDonald JW (eds) Handbook of clinical neurology, vol 109. Elsevier, Amsterdam, pp 575–594

    Google Scholar 

  56. Prieto EM, Guelcher SA (2014) Chapter 5—tailoring properties of polymeric biomedical foams. In: Netti PA (ed) Biomedical foams for tissue engineering applications. Woodhead Publishing, pp 129–162

    Google Scholar 

  57. Salerno A, Leonardi AB, Pedram P et al. (2020) Tuning the three-dimensional architecture of supercritical CO2 foamed PCL scaffolds by a novel mould patterning approach. Mater Sci Eng C 109:110518

    Article  CAS  Google Scholar 

  58. Duarte RM, Correia-Pinto J, Reis RL, Duarte ARC (2018) Subcritical carbon dioxide foaming of polycaprolactone for bone tissue regeneration. J Supercrit Fluid 140:1–10

    Article  CAS  Google Scholar 

  59. Kuang T, Chen F, Chang L (2017) Facile preparation of open-cellular porous poly(l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem Eng J 307:1017–1025

    Article  CAS  Google Scholar 

  60. Zhu M, Li W, Dong X (2019) In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat Commun 10:4620

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nikolova MP, Chavali MS (2019) Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater 4:271–292

    Article  PubMed  PubMed Central  Google Scholar 

  62. Samadian H, Maleki H, Fathollahi A et al. (2020) Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int J Biol Macromol 154:795–817

    Article  CAS  PubMed  Google Scholar 

  63. Stokols S, Tuszynski MH (2004) The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839–5846

    Article  CAS  PubMed  Google Scholar 

  64. Koffler J, Samara RF, Rosenzweig ES (2014) Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury. In: Murray AJ (ed) Axon growth and regeneration: methods and protocols. Springer, New York, pp 157–165

    Chapter  Google Scholar 

  65. Dumont CM, Carlson MA, Munsell MK et al. (2019) Aligned hydrogel tubes guide regeneration following spinal cord injury. Acta Biomater 86:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bedir T, Ulag S, Ustundag CB, Gunduz O (2020) 3D bioprinting applications in neural tissue engineering for spinal cord injury repair. Mater Sci Eng C 110:110741

    Article  CAS  Google Scholar 

  67. Matai I, Kaur G, Seyedsalehi A et al. (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536

    Article  CAS  PubMed  Google Scholar 

  68. Ashammakhi N, Ahadian S, Zengjie F et al. (2018) Advances and future perspectives in 4D bioprinting. Biotechnol J 13:e1800148

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wan Z, Zhang P, Liu Y et al. (2020) Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater 101:26–42

    Article  CAS  PubMed  Google Scholar 

  70. Miao S, Cui H, Esworthy T et al. (2020) 4D Self-morphing culture substrate for modulating cell differentiation. Adv Sci 7:1902403

    Article  CAS  Google Scholar 

  71. Tamay DG, Usal TD, Alagoz AS et al. (2019) 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol 7:164

    Article  PubMed  PubMed Central  Google Scholar 

  72. Joung D, Truong V, Neitzke CC et al. (2018) 3D Printed stem-cell derived neural progenitors generate spinal cord scaffolds. Adv Funct Mater 28:1801850

    Article  PubMed  PubMed Central  Google Scholar 

  73. Knowlton S, Anand S, Shah T, Tasoglu S (2018) Bioprinting for neural tissue engineering. Trends Neurosci 41:31–46

    Article  CAS  PubMed  Google Scholar 

  74. Li J, Wu C, Chu PK, Gelinsky M (2020) 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mat Sci Eng R 140:100543

    Article  Google Scholar 

  75. Jungst T, Smolan W, Schacht K et al. (2016) Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev 116:1496–1539

    Article  CAS  PubMed  Google Scholar 

  76. Kaplan B, Merdler U, Szklanny AA et al. (2020) Rapid prototy** fabrication of soft and oriented polyester scaffolds for axonal guidance. Biomaterials 251:120062

    Article  CAS  PubMed  Google Scholar 

  77. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  CAS  PubMed  Google Scholar 

  78. Straley KS, Foo CW, Heilshorn SC (2010) Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 27:1–19

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kigerl KA, Gensel JC, Ankeny DP et al. (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brown BN, Ratner BD, Goodman SB et al. (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33:3792–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kokaia Z, Martino G, Schwartz M, Lindvall O (2012) Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 15:1078–1087

    Article  CAS  PubMed  Google Scholar 

  82. Lee JA (2012) Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp Neurobiol 21:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang S, Wang XJ, Li WS et al. (2018) Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury. Acta Biomater 77:15–27

    Article  CAS  PubMed  Google Scholar 

  84. Zhang K, Zheng H, Liang S, Gao C (2016) Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 37:131–142

    Article  PubMed  Google Scholar 

  85. López-Dolado E, González-Mayorga A, Portolés MT et al. (2015) Subacute tissue response to 3D graphene oxide scaffolds implanted in the injured rat spinal cord. Adv Healthc Mater 4:1861–1868

    Article  PubMed  Google Scholar 

  86. López-Dolado E, González-Mayorga A, Gutiérrez MC, Serrano MC (2016) Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats. Biomaterials 99:72–81

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.F.G. thanks the Fundação para a Ciência e a Tecnologia (FCT) for the Ph.D. grant SFRH/BD/130287/2017, which is carried out in collaboration between TEMA-UA and ICMM-CSIC. J.S. thanks FCT for the Ph.D. grant SFRH/BD/144579/2019. P.A.A.P.M., M.T.P. and M.C. acknowledge the European Union’s Horizon 2020 Research and Innovation Programme for funding the project NeuroStimSpinal (grant agreement No. 829060). The projects UIDB/00481/2020 and UIDP/00481/2020 (FCT) and CENTRO-01-0145-FEDER-022083 (Centro Portugal Regional Operational Programme, Centro2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund, are also acknowledged for supporting TEMA Research Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula A. A. P. Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Girão, A.F., Sousa, J., Cicuéndez, M., Serrano, M.C., Portolés, M.T., Marques, P.A.A.P. (2022). Tailoring 3D Biomaterials for Spinal Cord Injury Repair. In: López-Dolado, E., Concepción Serrano, M. (eds) Engineering Biomaterials for Neural Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81400-7_3

Download citation

Publish with us

Policies and ethics

Navigation