Gaussian Systems, T-Hermite Polynomials, Moments, and Cumulants

  • Chapter
  • First Online:
Multivariate Statistical Methods

Part of the book series: Frontiers in Probability and the Statistical Sciences ((FROPROSTAS))

  • 1085 Accesses

Abstract

Hermite polynomials have several applications in many fields of science. We start with the classical Hermite polynomials of one variable, which constitute a complete set of orthonormal polynomials in the nonlinear Hilbert space of Gaussian variates. We use the method of generating functions for deriving multivariate Hermite polynomials. Well known properties are listed and higher-order moments and cumulants are considered in detail not only for Hermite polynomials but also for Gaussian systems. These general formulae are given in connection with set partitions. Clear, computationally simple expressions are given for the product of two, three, and four Hermite polynomials in terms of linear combinations of Hermite polynomials. We use our T-calculus to study multivariate vector-valued Hermite polynomials. Most of the results for multivariate Hermite polynomials (scalar-valued) are generalized to vector-valued cases with the help of commutators, T-moments, and T-cumulants. We also establish relations between multivariate Hermite polynomials and multiple vector-valued Hermite polynomials. The Gram–Charlier expansion of multivariate distributions in terms of T-Hermite polynomials closes the chapter.

We consider the so-called probabilists’ Hermite polynomials, which physicists denote differently as He.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari S-i, Kumon M (1983) Differential geometry of Edgeworth expansions in curved exponential family. Ann Inst Stat Math 35(1):1–24

    Article  MathSciNet  Google Scholar 

  2. Abramowitz M, Stegun IA (1992) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications Inc., New York. Reprint of the 1972 edition.

    Google Scholar 

  3. Brenn T, Anfinsen SN (2017) A revisit of the Gram-Charlier and Edgeworth series expansions. Artikler, rapporter og annet (fysikk og teknologi), Department of Physics and Technology, University of Tromsø, The Arctic University of Norway

    Google Scholar 

  4. Blinnikov S, Moessner R (1998) Expansions for nearly Gaussian distributions. Astron Astrophys Suppl Ser 130(1):193–205

    Article  Google Scholar 

  5. Barndorff-Nielsen O, Pedersen BV (1979) The bivariate Hermite polynomials up to order six. Scand J Stat 6(3):127–128

    MathSciNet  MATH  Google Scholar 

  6. Carlitz L (1962) The product of several Hermite or Laguerre polynomials. Monatshefte Math 66(5):393–396

    Article  MathSciNet  Google Scholar 

  7. Chambers JM (1967) On methods of asymptotic approximation for multivariate distributions. Biometrika 54(3–4):367–383

    Article  MathSciNet  Google Scholar 

  8. Cramér H (1999) Mathematical methods of statistics, vol 43. Princeton University Press, Princeton

    MATH  Google Scholar 

  9. Dharmani BC (2018) Multivariate generalized Gram–Charlier series in vector notations. J Math Chem 56(6):1631–1655

    Article  MathSciNet  Google Scholar 

  10. Dobrushin RL, Minlos RA (1977) Polynomials in linear random functions. Russ Math Surv 32(2):71–127

    Article  Google Scholar 

  11. Dobrushin RL, Major P (1979) Non-central limit theorems for non-linear functionals of Gaussian fields. Z Wahrsch Verw Gebiete 50:27–52

    Article  MathSciNet  Google Scholar 

  12. Dobrushin RL, Minlos RA (1979) The moments and polynomials of a generalized random field. Theory Probab Appl 23(4):686–699

    Article  Google Scholar 

  13. Dunkl CF, Xu Y (2014) Orthogonal polynomials of several variables, vol 155. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1981) Higher transcendental functions. Vol. II. Robert E. Krieger Publishing Co. Inc., Melbourne, FL. Based on notes left by Harry Bateman, Reprint of the 1953 original

    Google Scholar 

  15. Feldheim E (1940) Expansions and integral-transforms for products of Laguerre and Hermite polynomials. Q J Math 1(1):18–29

    Article  MathSciNet  Google Scholar 

  16. Glimm J, Jaffe A (2012) Quantum physics: a functional integral point of view. Springer Science & Business Media, New York

    MATH  Google Scholar 

  17. Grad H (1949) Note on N-dimensional Hermite polynomials. Commun Pure Appl Math 2(4):325–330

    Article  MathSciNet  Google Scholar 

  18. Gupta SS (1963) Bibliography on the multivariate normal integrals and related topics. Ann Math Stat 34(3):829–838

    Article  MathSciNet  Google Scholar 

  19. Hida T (1980) Brownian motion. Springer, New York

    Book  Google Scholar 

  20. Holmquist B (1988) Moments and cumulants of the multivariate normal distribution. Stoch Anal Appl 6(3):273–278

    Article  MathSciNet  Google Scholar 

  21. Holmquist B (1996) The d-variate vector Hermite polynomial of order. Linear Algebra Appl 237/238:155–190

    Article  MathSciNet  Google Scholar 

  22. Holmquist B (1996) Expectations of products of quadratic forms in normal variables. Stoch Anal Appl 14(2):149–164

    Article  MathSciNet  Google Scholar 

  23. Isserlis L (1918) On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12(1/2):134–139

    Article  Google Scholar 

  24. Jammalamadaka S, Subba Rao T, Terdik Gy (2006) Higher order cumulants of random vectors and applications to statistical inference and time series. Sankhya (A Methodol) 68:326–356

    MathSciNet  MATH  Google Scholar 

  25. Major P (1981) Multiple Wiener–Itô integrals, Lecture Notes in Mathematics, vol 849, 2nd, 2014 edn. Springer, New York

    Book  Google Scholar 

  26. Malyshev VA (1980) Cluster expansions in lattice models of statistical physics and the quantum theory of fields. Uspekhi Mat Nauk 35(2(212)):2–53

    Google Scholar 

  27. McKean HPJ (1952) A new proof of the completeness of the hermite functions. Tech. rep., Mathematical Notes

    Google Scholar 

  28. Malyshev VA, Minlos RA (1985) Gibbs random fields. Nauka, Moscow

    MATH  Google Scholar 

  29. Michalowicz JV, Nichols JM, Bucholtz F, Olson CC (2009) An Isserlis’ theorem for mixed Gaussian variables: Application to the auto-bispectral density. J Stat Phys 136(1):89–102

    Article  MathSciNet  Google Scholar 

  30. Mathai AM, Provost SB (1992) Quadratic forms in random variables: theory and applications. Dekker

    MATH  Google Scholar 

  31. Pólya Gy, Szegő G (1972) Problems and theorems in analysis, vol I. Springer, Berlin, Heidelberg

    Google Scholar 

  32. Peccati G, Taqqu MS (2011) Wiener chaos: moments, cumulants and diagrams: A survey with computer implementation, vol 1. Springer Science & Business Media, New York

    Book  Google Scholar 

  33. Rahman S (2017) Wiener–Hermite polynomial expansion for multivariate gaussian probability measures. J Math Anal Appl 454(1):303–334

    Article  MathSciNet  Google Scholar 

  34. Szegő G (1936) Orthogonal polynomials. American Mathematical Society, Colloquium Publ., vol XXIII. American Mathematical Society, New York

    Google Scholar 

  35. Taqqu MS (1975) Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z Wahrsch verwandte Geb 31:287–302

    Article  MathSciNet  Google Scholar 

  36. Terdik Gy (2002) Higher order statistics and multivariate vector hermite polynomials for nonlinear analysis of multidimensional time series. Teor Ver Matem Stat (Teor Imovirnost ta Matem Statyst) 66:147–168

    MATH  Google Scholar 

  37. Watson GN (1938) A note on the polynomials of Hermite And Laguerre. J Lond Math Soc 1(1):29–32

    Article  MathSciNet  Google Scholar 

  38. Withers CS (1984) A chain rule for differentiation with applications to multivariate hermite polynomials. Bull Austral Math Soc 30(2):247–250

    Article  MathSciNet  Google Scholar 

  39. Withers CS (2000) A simple expression for the multivariate Hermite polynomials. Stat Probab Lett 47(2):165–169

    Article  MathSciNet  Google Scholar 

  40. Wünsche A (2000) Corrigenda: “General Hermite and Laguerre two-dimensional polynomials”. J Phys A 33(17):3531

    Article  MathSciNet  Google Scholar 

  41. Wünsche A (2000) General Hermite and Laguerre two-dimensional polynomials. J Phys A 33(8):1603–1629

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terdik, G. (2021). Gaussian Systems, T-Hermite Polynomials, Moments, and Cumulants. In: Multivariate Statistical Methods . Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-81392-5_4

Download citation

Publish with us

Policies and ethics

Navigation