Urinary Profiling with Liquid Chromatography-Mass Spectrometry

Applications to Prediabetes in Animal Models

  • Living reference work entry
  • First Online:
Biomarkers in Diabetes
  • 33 Accesses

Abstract

Prediabetes is a metabolic syndrome characterized by an elevated blood sugar. About 5–10% of prediabetes developed into diabetes. Prediabetes usually goes unnoticed as it is symptomless; however, it can be diagnosed by measuring the blood glucose levels, which is done invasively and therefore is not a favorable device by many. Noninvasive diagnosis tools by using urine specimens are desired. Urine contains useful biomarkers, namely, metabolites and proteins, that can be used to indicate the progression of prediabetes. Liquid chromatography separation coupled with mass spectrometry detector is useful in analyzing both small molecule metabolites and also macromolecule proteins. In addition, OPLS-DA patterns of the urinary profiles of metabolites may also be used as indicator for prediabetes. This approach can be used to evaluate the state of disease by using urine specimen; furthermore, the impact of diet on the state of prediabetes disease can also be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ESI:

Electrospray ionization

FBG:

Fasting blood glucose

GLUT2:

Glucose transporter 2

GLUT4:

Glucose transporter 4

HFD:

High-fat diet

LC:

Liquid chromatography

LC-MS:

Liquid chromatography-mass spectrometry

LC-MS/MS:

Liquid chromatography-tandem mass spectrometry

MUPs:

Major urinary proteins

NA:

Nicotinamide

ND:

Normal diet

OPLS-DA:

Orthogonal partial least squares discriminant analysis

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

STZ:

Streptozotocin

T2DM:

Type 2 diabetes mellitus

References

  • Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi S, Farhangi A, Verdi AA, Rad BL. Induction of diabetes by streptozotocin in rats. Indian J Clin Biochem. 2007;22(2):60–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • American Diabetes Association. (2019). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes – 2019. Diabetes Care, 42(Supplement 1), S13-S28.

    Google Scholar 

  • Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem. 2012;2012:1–40.

    Google Scholar 

  • Bellei E, Rossi E, Lucchi L, Uggeri S, Albertazzi A, Tomasi A, Iannone A. Proteomic analysis of early urinary biomarkers of renal changes in type 2 diabetic patients. PROTEOMICS–Clin Appl. 2008;2(4):478–91.

    CAS  PubMed  Google Scholar 

  • Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS. The human urine metabolome. PLoS One. 2013;8(9):e73076. https://doi.org/10.1371/journal.pone.0073076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess RR. Protein precipitation techniques. Methods Enzymol. 2009;463:331–42.

    CAS  PubMed  Google Scholar 

  • Chen WW, Zhang X, Huang WJ. Role of physical exercise in Alzheimer’s disease. Biomed Rep. 2016;4(4):403–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu L, Fu G, Meng Q, Zhou H, Zhang M. Identification of urinary biomarkers for type 2 diabetes using bead-based proteomic approach. Diabetes Res Clin Pract. 2013;101(2):187–93.

    CAS  PubMed  Google Scholar 

  • Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes. Diabetes Care. 2010;33(12):2692–6.

    PubMed  PubMed Central  Google Scholar 

  • Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity / exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79.

    PubMed  PubMed Central  Google Scholar 

  • Currie G, McKay G, Delles C. Biomarkers in diabetic nephropathy: present and future. World J Diabetes. 2014;5(6):763.

    PubMed  PubMed Central  Google Scholar 

  • Dorcely B, Katz K, Jagannathan R, Chiang SS, Oluwadare B, Goldberg IJ, Bergman M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes Targets Therapy. 2017;10:345.

    CAS  Google Scholar 

  • Emwas A, Luchinat C, Turano P, Tenori L, Salek RM, Ryan D, et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. 2015;11(4):872–94.

    CAS  PubMed  Google Scholar 

  • Gama MR, Collins CH, Bottoli CB. Nano-liquid chromatography in pharmaceutical and biomedical research. J Chromatogr Sci. 2013;51(7):694–703.

    CAS  PubMed  Google Scholar 

  • Gao Y. Urine – an untapped goldmine for biomarker discovery? Sci China Life Sci. 2013;56(12):1145–6. https://doi.org/10.1007/s11427-013-4574-1.

    Article  PubMed  Google Scholar 

  • Gao Y. Part II urinary biomarkers of diseases. Urine: promising biomarker source for early disease detection, 2019. p. 75–189.

    Google Scholar 

  • Gibbons H, McNulty BA, Nugent AP, Walton J, Flynn A, Gibney MJ, Brennan L. A metabolomics approach to the identification of biomarkers of sugar-sweetened beverage intake. Am J Clin Nutr. 2015;101(3):471–7. https://doi.org/10.3945/ajcn.114.095604.

    Article  CAS  PubMed  Google Scholar 

  • Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49(1):235–61.

    CAS  PubMed  Google Scholar 

  • Grebe SK, Singh RJ. LC-MS/MS in the clinical laboratory–where to from here? Clin Biochem Rev. 2011;32(1):5–31.

    PubMed  PubMed Central  Google Scholar 

  • Guan M, **e L, Diao C, Wang N, Hu W, Zheng Y, et al. Systemic perturbations of key metabolites in diabetic rats during the evolution of diabetes studied by urine metabonomics. PLoS One. 2013;8(4):1–10.

    Google Scholar 

  • Hughes VA, Fiatarone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, et al. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Phys. 1993;264(6 Pt 1):E855–62.

    CAS  Google Scholar 

  • Kato M, Natarajan R. Diabetic nephropathy – emerging epigenetic mechanisms. Nat Rev Nephrol. 2014;10(9):517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kavanagh C, Uy N. Nephrogenic diabetes insipidus. Pediatr Clin N Am. 2019;66(1):227–34. https://doi.org/10.1016/j.pcl.2018.09.006.

    Article  Google Scholar 

  • Kawai C, Kotani H, Miyao M, Ishida T, Jemail L, Abiru H, Tamaki K. Circulating extracellular histones are clinically relevant mediators of multiple organ injury. Am J Pathol. 2016;186(4):829–43.

    CAS  PubMed  Google Scholar 

  • Khamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom Rev. 2017;36(2):115–34. https://doi.org/10.1002/mas.21455.

    Article  CAS  PubMed  Google Scholar 

  • Klein J, Bascands J-L, Mischak H, Schanstra JP. The role of urinary peptidomics in kidney disease research. Kidney Int. 2016;89(3):539–45.

    CAS  PubMed  Google Scholar 

  • Lee J-E. Alternative biomarkers for assessing glycemic control in diabetes: fructosamine, glycated albumin, and 1, 5-anhydroglucitol. Annals of Pediatric Endocrinology & Metabolism. 2015;20(2):74–8.

    Google Scholar 

  • Lee Y-F, Sim X-Y, The Y-H, Ismail MN, Greimel P, Murugaiyah V, Ibrahim B, Gam L-H. The effects of high-fat diet and metformin on urinary metabolites in diabetes and prediabetes rat models. Biotechnol Appl Biochem. 2020; https://doi.org/10.1002/bab.2021.

  • Madeira PJA, Florêncio MH. Applications of tandem mass spectrometry: from structural analysis to fundamental studies. Tandem Mass Spectrometry–Appl Princ. 2012;33(2):1–27.

    Google Scholar 

  • Masiello P, Broca C, Gross R, Royem M, Manteghettim M, Hillarire-Buysm D, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 1998;47:224–9.

    CAS  PubMed  Google Scholar 

  • Matheson A, Willcox MD, Flanagan J, Walsh BJ. Urinary biomarkers involved in type 2 diabetes: a review. Diabetes Metab Res Rev. 2010;26(3):150–71.

    CAS  PubMed  Google Scholar 

  • May DH, Navarro SL, Ruczinski I, Hogan J, Ogata Y, Schwarz Y, Levy L, Holzman T, McIntosh MW, Lampe JW. Metabolomic profiling of urine: response to a randomised, controlled feeding study of select fruits and vegetables, and application to an observational study. Br J Nutr. 2013;110(10):1760–70. https://doi.org/10.1017/S000711451300127X.

    Article  CAS  PubMed  Google Scholar 

  • Milac TI, Randolph TW, Wang P. Analyzing LC-MS/MS data by spectral count and ion abundance: two case studies. Stat Interface. 2012;5(1):75–87.

    PubMed  PubMed Central  Google Scholar 

  • Miller IJ, Peters SR, Overmyer KA, Paulson BR, Westphall MS, Coon JJ. Real-time health monitoring through urine metabolomics. NPJ Digital Med. 2019;2(1):109. https://doi.org/10.1038/s41746-019-0185-y.

    Article  Google Scholar 

  • Patel DN, Kalia K. Characterization of low molecular weight urinary proteins at varying time intervals in type 2 diabetes mellitus and diabetic nephropathy patients. Diabetol Metab Syndr. 2019;11(1):1–11.

    CAS  Google Scholar 

  • Pujos-Guillot E, Hubert J, Martin J-F, Lyan B, Quintana M, Claude S, Chabanas B, Rothwell JA, Bennetau-Pelissero C, Scalbert A, Comte B, Hercberg S, Morand C, Galan P, Manach C. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake: citrus fruit as a case study. J Proteome Res. 2013;12(4):1645–59. https://doi.org/10.1021/pr300997c.

    Article  CAS  PubMed  Google Scholar 

  • Reddy MA, Park JT, Natarajan R. Epigenetic modifications in the pathogenesis of diabetic nephropathy. Semin Nephrol. 2013;33(4):341–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riaz S, Alam SS, Akhtar MW. Proteomic identification of human serum biomarkers in diabetes mellitus type 2. J Pharm Biomed Anal. 2010;51(5):1103–7.

    CAS  PubMed  Google Scholar 

  • Roy AK, Chatterjee B, Prasad MS, Unakar N. Role of insulin in the regulation of the hepatic messenger RNA for α (2u)-globulin in diabetic rats. J Biol Chem. 1980;255(23):11614–8.

    CAS  PubMed  Google Scholar 

  • Sas KM, Karnovsk A, Michailidis G, Pennathu S. Metabolomics and diabetes: analytical and computational approaches. Diabetes. 2015;64:718–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sayyed SG, Gaikwad AB, Lichtnekert J, Kulkarni O, Eulberg D, Klussmann S, Anders H-J. Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10. Nephrol Dial Transplant. 2010;25(6):1811–7.

    CAS  PubMed  Google Scholar 

  • Schägger H, Von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166(2):368–79.

    PubMed  Google Scholar 

  • Sharma V, Tikoo K. Stage-specific quantitative changes in renal and urinary proteome during the progression and development of streptozotocin-induced diabetic nephropathy in rats. Mol Cell Biochem. 2014;388(1–2):95–111.

    CAS  PubMed  Google Scholar 

  • Soares R, Pires E, Almeida AM, Santos R, Gomes R, Koči K, Coelho AV. Tandem mass spectrometry of peptides. Tandem Mass Spectrometry Appl Princ. 2012:35–56.

    Google Scholar 

  • Szkudelski T. Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012;237(5):481–90.

    CAS  Google Scholar 

  • Tam ZY, Ng SP, Tan LQ, Lin CH, Rothenbacher D, Klenk J, et al. Metabolite profiling in identifying metabolic biomarkers in older people with late-onset type 2 diabetes mellitus. Sci Rep. 2017;7(1):1–12.

    Google Scholar 

  • Teh YH, Sim X-Y, Lee Y-F, Ahmad W, Murugaiyah V, Ibrahim B, Ismail MN, Greimel P, Gam LH. Potential urinary disease marker for diabetes. J Scientific Tech Res. 2020a; https://doi.org/10.26717/BJSTR.2020.28.004665.

  • Teh Y-H, Sim X-Y, Lee Y-F, Ahmad W, Murugaiyah V, Ibrahim B, Ismail MN, Greimel P, Gam L-H. Urinary protein profile changes in diabetic rats and pre-diabetic rats fed with high-fat diets. Biomed Res Therapy. 2020b;7(1):3593–601.

    Google Scholar 

  • Vaishya S, Sarwade RD, Seshadri V. MicroRNA, proteins, and metabolites as novel biomarkers for prediabetes, diabetes, and related complications. Front Endocrinol. 2018;9:180.

    Google Scholar 

  • van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Malcolm RM. Can animal models of disease reliably inform human studies? PLoS Med. 2010; https://doi.org/10.1371/journal.pmed.1000245.

  • Verheggen K, Ræder H, Berven FS, Martens L, Barsnes H, Vaudel M. Anatomy and evolution of database search engines – a central component of mass spectrometry based proteomic workflows. Mass Spectrom Rev. 2020;39(3):292–306.

    CAS  PubMed  Google Scholar 

  • Wald C. Diagnostics: a flow of information. Nature. 2017;551(7679):S48–50. https://doi.org/10.1038/551S48a.

    Article  CAS  PubMed  Google Scholar 

  • Walsh MC, Brennan L, Malthouse JPG, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr. 2006;84(3):531–9.

    CAS  PubMed  Google Scholar 

  • Wang Z, Liu X, Liu X, Sun H, Guo Z, Zheng G, et al. UPLC-MS based urine untargeted metabolomic analyses to differentiate bladder cancer from renal cell carcinoma. BMC Cancer. 2019;19(1):1–11.

    Google Scholar 

  • Wiklund S, Johansson E, Sjöström L, Mellerowicz EJ, Edlund U, Shockcor JP, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem. 2008;80(1):115–22.

    CAS  PubMed  Google Scholar 

  • Wilson SR, Vehus T, Berg HS, Lundanes E. Nano-LC in proteomics: recent advances and approaches. Bioanalysis. 2015;7(14):1799–815.

    CAS  PubMed  Google Scholar 

  • Wingfield P. Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci. 1998;13(1):A. 3F. 1–8.

    Google Scholar 

  • Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics. 2015;12(6):623–36. https://doi.org/10.1586/14789450.2015.1094380.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes Targets Therapy. 2015;8:181–8.

    Google Scholar 

  • **ao X, Zou L, Sun W. Human urine proteome: a powerful source for clinical research. In: Gao Y, editors. Urine. 2019. p. 9–24.

    Google Scholar 

  • Zhou Y, Rui L. Major urinary protein regulation of chemical communication and nutrient metabolism. Vitam Horm. 2010, 83 Elsevier:151–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lay-Harn Gam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gam, LH. (2022). Urinary Profiling with Liquid Chromatography-Mass Spectrometry. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Diabetes. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81303-1_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81303-1_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81303-1

  • Online ISBN: 978-3-030-81303-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation