Climate Effects of Other Pollutants – Short-Lived Climate Forcers and the Arctic

  • Chapter
  • First Online:
Global Arctic

Abstract

Globally, CO2 and other long-lived greenhouse gas emissions are key components that affect climate, but some of the more shorter-lived air pollutants also either warm or cool the climate on timescales depending on the species. Therefore, emission reduction policies from a climate perspective need to take into account the net effect of multiple pollutants (UNEP/WMO, 2011; Stohl et al., 2015). The pollutants considered to have most climate relevance are termed short-lived climate pollutants (SLCPs) or short-lived climate forcers (SLCFs), depending on the context. For example, the Intergovernmental Panel on Climate Change’s (IPCC) special report Global Warming of 1.5 C (IPCC, 2019) defined SLCFs to refer to both cooling and warming species that include methane (CH4), ozone (O3) and aerosols (including, black carbon, BC, organic carbon, OC, and sulfate) or their precursors, as well as some halogenated species. SLCPs refer only to the warming SLCFs (IPCC, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., & Winiwarter, W. (2011). Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software, 26, 1489–1501.

    Article  Google Scholar 

  • AMAP. (2008a). AMAP/Quinn et al., 2008, The impact of short-lived pollutants on arctic climate (AMAP technical report No. 1) (23 p). Arctic Monitoring and Assessment Programme (AMAP). https://www.amap.no/documents/doc/the-impact-of-short-lived-pollutants-on-arctic-climate/15

  • AMAP. (2008b). AMAP/Bluestein et al., 2008, Sources and mitigation opportunities to reduce emissions of short-term arctic climate forcers (AMAP technical report No. 2) (8 p). Arctic Monitoring and Assessment Programme (AMAP). https://www.amap.no/documents/doc/sources-and-mitigation-opportunities-to-reduce-emissions-of-short-term-arctic-climate-forcers/13

  • AMAP. (2011). In P. K. Quinn, A. Stohl, A. Arneth, T. Berntsen, J. F. Burkhart, J. Christensen, M. Flanner, K. Kupiainen, H. Lihavainen, M. Shepherd, V. Shevchenko, H. Skov, & V. Vestreng (Eds.), The impact of black carbon on Arctic climate. Arctic Monitoring and Assessment Programme (AMAP). 72 pp. ISBN 978-82-7971-069-1.

    Google Scholar 

  • AMAP. (2017). Snow, Water, Ice and Permafrost in the Arctic (SWIPA), Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. xiv + 269 pp. ISBN 978-82-7971-101-8.

    Google Scholar 

  • AMAP Assessment. (2015a). Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP). vii + 116 pp. ISBN 978-82-7971-092-9.

    Google Scholar 

  • AMAP Assessment. (2015b). Methane as an Arctic climate forcer. Arctic Monitoring and Assessment Programme (AMAP). vii + 139 pp. ISBN 978-82-7971-091-2.

    Google Scholar 

  • AMAP Assessment. (2021). Impacts of short-lived climate forcers on Arctic climate, air quality, and human health. Arctic Monitoring and Assessment Programme (AMAP). In press.

    Google Scholar 

  • Arctic Council. (2015). Annex 4. Iqaluit 2015 Sao report to ministers. Enhanced black carbon and methane emissions reductions. An Arctic Council Framework for Action. Available at: https://oaarchive.arctic-council.org/handle/11374/610. Last access: 18 Dec 2020.

  • Arctic Council. (2017). Expert group on black carbon and methane; summary of progress and recommendations. Available at: https://oaarchive.arctic-council.org/handle/11374/1936. Last access: 18 Dec 2020.

  • Arctic Council. (2019). Expert group on black carbon and methane; summary of progress and recommendations 2019, available at: https://oaarchive.arctic-council.org/handle/11374/2411. Last access: 18 Dec 2020.

  • Barrie, L. A. (1986). Arctic air-pollution – An overview of current knowledge. Atmospheric Environment, 20(4), 643–663.

    Article  Google Scholar 

  • Christensen, T. R., Arora, V. K., Gauss, M., Höglund-Isaksson, L., & Parmentier, F.-J. W. (2019). Tracing the climate signal: Mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Scientific Reports, 9, 1146. https://doi.org/10.1038/s41598-018-37719-9

    Article  Google Scholar 

  • Eckhardt, S., Quennehen, B., Olivié, D. J. L., Berntsen, T. K., Cherian, R., Christensen, J. H., Collins, W., Crepinsek, S., Daskalakis, N., Flanner, M., Herber, A., Heyes, C., Hodnebrog, Ø., Huang, L., Kanakidou, M., Klimont, Z., Langner, J., Law, K. S., Lund, M. T., Mahmood, R., Massling, A., Myriokefalitakis, S., Nielsen, I. E., Nøjgaard, J. K., Quaas, J., Quinn, P. K., Raut, J. C., Rumbold, S. T., Schulz, M., Sharma, S., Skeie, R. B., Skov, H., Uttal, T., von Salzen, K., & Stohl, A. (2015). Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: A multi-model evaluation using a comprehensive measurement data set. Atmospheric Chemistry and Physics, 15(16), 9413–9433. https://doi.org/10.5194/acp-15-9413-2015

    Article  Google Scholar 

  • Etminan, M., Myhre, G., Highwood, E. J., & Shine, K. P. (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 43, 12,614–12,623. https://doi.org/10.1002/2016GL071930

    Article  Google Scholar 

  • Evangeliou, N., Kylling, A., Eckhardt, S., Myroniuk, V., Stebel, K., Paugam, R., Zibtsev, S., & Stohl, A. (2019). Open fires in Greenland in summer 2017: Transport, deposition and radiative effects of BC, OC and BrC emissions. Atmospheric Chemistry and Physics, 19, 1393–1411. https://doi.org/10.5194/acp-19-1393-2019

    Article  Google Scholar 

  • Flanner, M. G., Gardner, A. S., Eckhardt, S., Stohl, A., & Perket, J. (2014). Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions. Journal of Geophysical Research: Atmospheres, 119, 9481–9491. https://doi.org/10.1002/2014JD021977

    Article  Google Scholar 

  • Gothenburg Protocol. (1999). Protocol to the 1979 CLRTAP to abate acidification, eutrophication and ground-level ozone (adopted 30 November 1999, entered into force 17 May 2005) 2319 UNTS 81.

    Google Scholar 

  • IPCC. (2014). In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (151 pp). IPCC.

    Google Scholar 

  • IPCC (2019). Annex I: Glossary. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5 C. an IPCC special report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Khan, A. (2016). The global commons through a regional Lens: The Arctic council on short-lived climate pollutants. Transnational Environmental Law, 1–22. https://doi.org/10.1017/S2047102516000157

  • Khan, A., & Kulovesi, K. (2018). Black carbon and the Arctic: Global problem-solving through the nexus of science, law and space. Review of European, Comparative & International Environmental Law, 27, 5–14. https://doi.org/10.1111/reel.12245

    Article  Google Scholar 

  • McCarty et al. (2021). https://bg.copernicus.org/articles/18/5053/2021/bg-18-5053-2021.pdf

  • Miller, R.L. & Tegen, I. (1998). Climate response to soil dust aerosols. Journal of Climate, 11, 3247–3267.

    Google Scholar 

  • Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. **a, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • OECD. (2021). The economic benefits of air quality improvements in Arctic council countries. OECD Publishing.

    Book  Google Scholar 

  • Rogelj, J., Schaeffer, M., Meinshausen, M., Shindell, D. T., Hare, W., Klimont, Z., Velders, G. J. M., Amann, M., & Schellnhuber, H. J. (2014). Disentangling the effects of CO2 and short-lived climate forcer mitigation. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 111(46), 16325–16330. https://doi.org/10.1073/pnas.1415631111

  • Sand, M., Berntsen, T. K., von Salzen, K., Flanner, M. G., Langner, J., & Victor, D. G. (2016). Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nature Climate Change, 6, 286–290. https://doi.org/10.1038/nclimate2880

    Article  Google Scholar 

  • Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S. C., Muller, N., Janssens-Maenhaut, G., Raes, F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K., Höglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks, K., Kim Oanh, N. T., Milly, G.,Williams, M., Demkine, W., & Fowler, D. (2012). Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335, 183–189. https://doi.org/10.1126/science.1210026

  • Shindell, D., Borgford-Parnell, N., Brauer, M., Haines, A., Kuylenstierna, J. C. I., Leonard, S. A., Ramanathan, V., Ravishankara, A., Amann, M., & Srivastava, L. (2017). A climate policy pathway for near- and long-term benefits. Science, 356, 493–494. https://doi.org/10.1126/science.aak9521

  • Stohl, A., Berg, T., Burkhart, J. F., Fjaeraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Stroem, J., Torseth, K., Treffeisen, R., Virkkunen, K., & Yttri, K. E. (2007). Arctic smoke – Record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe. Atmospheric Chemistry and Physics, 7, 511–534.

    Article  Google Scholar 

  • Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., & Zhu, T. (2015). Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry and Physics, 15, 10529–10566. https://doi.org/10.5194/acp-15-10529-2015

    Article  Google Scholar 

  • UNEP & WMO (2011). Integrated assessment of black carbon and tropospheric ozone: Summary for decision makers. 30 p. ISBN: 978-92-807-3142-2. Available at: http://wedocs.unep.org/handle/20.500.11822/8028.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaarle Kupiainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kupiainen, K., Flanner, M., Eckhardt, S. (2022). Climate Effects of Other Pollutants – Short-Lived Climate Forcers and the Arctic. In: Finger, M., Rekvig, G. (eds) Global Arctic. Springer, Cham. https://doi.org/10.1007/978-3-030-81253-9_9

Download citation

Publish with us

Policies and ethics

Navigation