Plant Growth-Promoting Phoma spp.

  • Chapter
  • First Online:
Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology

Abstract

The interactions between plants and the rhizospheric fungi Phoma spp. confer several favorable features to a wide array of hosts. This chapter explains new knowledge regarding plant growth promotion by Phoma spp. Different species of Phoma were isolated from the rhizosphere of numerous plants such as soybean, carnation, cucumber, and zoysiagrass. The endophytic Phoma spp. promoted growth attributes and yield of different crops. Treatment with Phoma multirostrata enhanced tomato seedling vigor and bacterial wilt control in comparison with their controls. The mechanisms of growth increase by Phoma spp. comprise improving nutrient uptake by plants, controlling phytohormones production, emitting volatile organic compounds, and controlling plant diseases. Nutrient uptake was enhanced in plants colonized with Phoma spp. by increasing the available nutrients in the soil especially phosphorus. Phytohormones such as gibberellin were secreted by Phoma spp. causing increased plant biomass. Photosynthetic efficiency was improved in treated plants due to the production of volatile compounds. Plant signaling pathways were motivated by Phoma spp. especially ethylene pathway that is closely related to plant growth promotion. The use of Phoma spp. has been conceded as an eco-friendly method of increasing crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhter W, Bhuiyan MKA, Sultana F, Hossain MM (2015) Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.) C R Biol 338:21–28.

    Google Scholar 

  • Bal U, Altintas S (2006) Effects of Trichoderma harzianum on yield and fruit quality characteristics of tomato (Lycopersicon esculentum Mill) grown in an unheated greenhouse. Aust J Exp Agric 46:131–136.

    Google Scholar 

  • Barazani O, Benderoth M, Groten K, Giovannini O, Gessler G et al (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–243.

    PubMed  Google Scholar 

  • Bezerra JDP, Santos MGS, Svedese VM et al (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World Journal of Microbiology and Biotechnology 28 (5): 1989–1995,

    CAS  PubMed  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2005) Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and growth promotion of cucumber (Cucumis sativus L.). Mycoscience 46:201-204.

    Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286: 209–217.

    CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez LI, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592.

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Aloia M, Bonhomme D, Bouché F (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65:972–979.

    PubMed  Google Scholar 

  • Das K, Das S, Tiwari RKS (2012) Bioprospecting of Endophytic Fungi for Bioactive Natural Products: Recent Trends and Future Perspectives. Microbiology Application (eds) pp. 346–364.

    Google Scholar 

  • Das A, Varma A (2009). Symbiosis: the art of living, in Symbiotic Fungi Principles and Practice, A. Varma and A. C. Kharkwal, Eds., pp. 1–28, Springer, Berlin, Germany.

    Google Scholar 

  • Delgado-Sánchez P, Ortega-Amaro MA, Jiménez-Bremont JF, Flores J (2011) Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae). Plant Biol 13:154–159.

    PubMed  Google Scholar 

  • Denef K, Bubenheim H, Lenhart K et al (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779.

    CAS  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci U S A 105:8790–8794.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elad Y, Chet I, Henis Y (2006) Biological control of Rhizoctonia solani in strawberry fields by Trichoderma harzianum. Plant Soil 60:245–254.

    Google Scholar 

  • Elsharkawy MM (2019) Induced systemic resistance against Cucumber mosaic virus by Phoma sp. GS8-2 stimulates transcription of pathogenesis-related genes in Arabidopsis. Pest Manag Sci 75: 859–866.

    CAS  PubMed  Google Scholar 

  • Elsharkawy MM, El-Khateeb NM (2019) Antifungal activity and resistance induction against Sclerotium cepivorum by plant growth-promoting fungi in onion plants. Egyptian Journal of Biological Pest Control 29, 68. https://doi.org/10.1186/s41938-019-0178-9.

    Article  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17–2 in Arabidopsis and tobacco. Plant Pathol 61:964–976.

    CAS  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H et al. (2013) Induction of systemic resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol J 29:193–200.

    PubMed  PubMed Central  Google Scholar 

  • Elsharkawy MM, Hassan N, Ali M et al (2014) Effect of zoysiagrass rhizosphere fungal isolates on disease suppression and growth promotion of rice seedlings. Acta Agric Scand Sect B Soil Plant Sci 64:135–140.

    Google Scholar 

  • Elsharkawy MM, Suga H, Shimizu M (2020) Systemic resistance induced by Phoma sp. GS8-3 and nanosilica against Cucumber mosaic virus. Environ Sci Pollut Res 27: 19029–19037. https://doi.org/10.1007/s11356-018-3321-3.

    Article  CAS  Google Scholar 

  • Felten J, Kohler A, Morin E et al (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest J, Miller-Rushing JA (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos Trans R Soc B 365:3101–3112.

    Google Scholar 

  • Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5:723.

    PubMed  PubMed Central  Google Scholar 

  • Gaind S, Nain L. (2015). Soil-phosphorus mobilization potential of phytate mineralizing fungi. Journal of Plant Nutrition 38(14):2159-2175. https://doi.org/10.1080/01904167.2015.1014561.

    Article  CAS  Google Scholar 

  • Gupta R, Chakrabarty SK (2013) Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behav. 8(9): e25504. https://doi.org/10.4161/psb.25504.

  • Haisel D, Pospíšilová J, Synková H, ÄŒatský J, Wilhelmová N, Plzáková Å  (1999) Photosynthetic pigments and gas exchange of in vitro grown tobacco plants as affected by CO2 supply. Biologia Plantarum 42:463–468.

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Rehman G, Sohn EY, Shah AA, et al. (2009) Phoma herbarum as a new gibberellin producing and plant growth-promoting fungus. Journal of Microbiology and Biotechnology 19: 1244-1249. https://doi.org/10.4014/jmb.0901.030.

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL et al. (2010) Growth promotion of cucumber by pure cultures of gibberellin-producing Phoma sp. GAH7. World J Microbiol Biotechnol 26:889–894.

    CAS  Google Scholar 

  • Haque M, Ilias GNM, Molla AH (2012) Impact of Trichoderma-enriched bio-fertilizer on the growth and yield of mustard (Brassica rapa L.) and Tomato (Solanum lycopersicon Mill.) Agriculturists 10:109–119.

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species-opportunistic avirulent plant symbionts. Nat Rev Microbiol 2:43–56.

    CAS  PubMed  Google Scholar 

  • He X, Han G, Lin Y et al (2012) Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China, Ecological Research 27(2): 273–284.

    Google Scholar 

  • Hossain MM, Sultana F, Kubota M et al (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736.

    CAS  PubMed  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2008) Systemic resistance to bacterial leaf speck pathogen in Arabidopsis thaliana induced by the culture filtrate of a plant growth-promoting fungus (PGPF) Phoma sp GS8-1. Journal of General Plant Pathology 74: 213–221.

    CAS  Google Scholar 

  • Hossain MM, Hossain N, Sultana F et al (2013) Integrated management of Fusarium wilt of chickpea (Cicer arietinum L.) caused by Fusarium oxysporum f.sp. ciceris with microbial antagonist, botanical extract and fungicide. Afr J Biotechnol 12:4699–4706

    Google Scholar 

  • Hossain MM, Sultana F, Miyazawa M, Hyakumachi M (2014) The plant growth promoting fungi Penicillium spp. GP15-1 enhances growth and confers protection against dam**-off and anthracnose in the cucumber. J Oleo Sci 63(4):391–400

    CAS  PubMed  Google Scholar 

  • Hossain MM, Sultana F, Islam S (2017). Plant growth-promoting fungi (PGPF): Phytostimulation and induced systemic resistance. In: Singh D, Singh H, Prabha R, editors. Plant Microbe Interactions in AgroEcological Perspectives, Volume 2: Microbial Interactions and Agro-Ecological Impacts. Singapore: Springer; pp. 135-191. https://doi.org/10.1007/978-981-10-6593-4.

    Chapter  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26.

    Google Scholar 

  • Hyakumachi M (1994) Plant growth promoting fungi from turfgrass rhizosphere with potentials for disease suppression. Soil Microorganisms 44: 53-68.

    Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LSP, Shin-ichi I (2013) Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany 64:3829-3842.

    CAS  PubMed  Google Scholar 

  • Kai M, Haustei M, Molina F, Petri A, Scholz B, et al. (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81: 1001–1012.

    CAS  PubMed  Google Scholar 

  • Kang JW, Lee NY, Cho KC et al (2015) Analysis of nitrated proteins in Saccharomyces cerevisiae involved in mating signal transduction. Proteomics 15(2–3):580–590.

    CAS  PubMed  Google Scholar 

  • Kawaide H (2006) Biochemical and molecular analysis of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem 70: 583-590.

    CAS  PubMed  Google Scholar 

  • Khan SA, Hamayun M, Yoon HJ, Kim HY, Suh SJ, Hwang SK, et al (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8: 231.

    PubMed  PubMed Central  Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in Cytochrome c biogenesis genes. Journal of Bacteriology. 186 (16): 5384–5391.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YC, Johnson JM, Chien CT et al (2011) Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant-Microbe Interact 24:421–431.

    CAS  PubMed  Google Scholar 

  • Lee SM, Chung J, Ryu C-M (2015) Augmenting plant immune responses and biological control by microbial determinants. Res Plant Dis 21:161–179.

    CAS  Google Scholar 

  • Lee S, Yap M, Behringer G et al (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3:7.

    PubMed  PubMed Central  Google Scholar 

  • MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20: 387-442.

    Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant and Soil. 227 (1-2): 115–126.

    CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663.

    CAS  PubMed  Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology 12:567-572.

    CAS  PubMed  Google Scholar 

  • Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2013) Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ 28:42–49.

    PubMed  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M et al (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth promoting fungi in Arabidopsis thaliana. PLoS One 9: e86882. https://doi.org/10.1371/journal.pone.0086882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell K, Cigelnik E, Nirenberg HL (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycol 90:465–493.

    Google Scholar 

  • Ogas J (2000) Gibberellins. Curr. Biol. 10: R48.

    Google Scholar 

  • Ousley MA, Lynch JM, Whipps JM (1994) The effects of addition of Trichoderma inocula on flowering and shoot growth of bedding plants. Scientia Horticulturae. 59:147–155.

    Google Scholar 

  • Poulton JL, Bryla D, Koide RT, Stephenson AG (2002) Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol 154:255–264.

    CAS  Google Scholar 

  • Rajankar PN, Tambekar DH, Wate SR. (2007) Study of phosphate solubilization efficiencies of fungi and bacteria isolated from saline belt of Purna river basin. Research Journal of Agriculture and Biological Sciences 3 (6):701-703

    CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rim SO, Lee JH, Khan SA, Lee IJ, Rhee IK, Lee KS, Kim JG (2007) Isolation and identification of fungal strains producing gibberellins from the root of plants. Kor J Microbiol Biotechnol 35: 357-363.

    CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100:4927–4932.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saldajeno MGB, Ito M, Hyakumachi M (2012) Interaction between the plant growth-promoting fungus Phoma sp. GS8-2 and the arbuscular mycorrhizal fungus Glomus mosseae: impact on biocontrol of soil-borne diseases, microbial population, and plant growth. Australasian Plant Pathol. 41: 271–281. https://doi.org/10.1007/s13313-011-0101-7

    Article  CAS  Google Scholar 

  • Sánchez-López AM, Bahaji A, De Diego N et al (2016) Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiol 172:989–2001

    Google Scholar 

  • Saxena S (2015) Applied Microbiology. India: Springer Pvt. Ltd; p. 190.

    Google Scholar 

  • Schäfer P, Pfiffi S, Voll LM et al (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474

    PubMed  Google Scholar 

  • Shaikh MN, Mokat DN (2018) Role of rhizosphere fungi associated with commercially explored medicinal and aromatic plants: A Review. Curr Agr Res J 6(1):72–77 1:36–43

    Google Scholar 

  • Shiojiri K, Kishimoto K, Ozawa R, et al. (2006) Changing green leaf volatile biosynthesis in plants: An approach for improving plan resistance against both herbivores and pathogens. Proc. Natl. Acad. Sci. U.S.A. 103:16672–16676.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivanna MB, Meera MS, Hyakumachi M (1994) Sterile fungi from zoysiagrass rhizosphere as plant growth promoters in spring wheat. Can J Microbial 40:637–644.

    Google Scholar 

  • Shivanna MB, Meera MS, Hyakumachi M (1996) Role of root colonization ability of plant growth promoting fungi in the suppression of take-all and common root rot of wheat. Crop Protection 15(6):497-504.

    Google Scholar 

  • Shivanna MB, Meera MS, Kubota M, Hyakumachi M (2005) Promotion of growth and yield in cucumber by zoysiagrass rhizosphere fungi. Microbes Environ 20:34–40.

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43.

    CAS  PubMed  Google Scholar 

  • Srivastava S, Singh V, Gupta PS et al (2006) Nested PCR assay for detection sugarcane grassy shoot phytoplasma in the leafhopper vector Deltocephalus vulgaris: a first report. Plant Pathol 55:25–28.

    CAS  Google Scholar 

  • Sultana F, Hossain MM, Kubota M, Hyakumachi M (2008) Elicitation of systemic resistance against the bacterial speck pathogen in Arabidopsis thaliana by culture filtrates of plant growth promoting fungi. Canadian Journal of Plant Pathology 30(2):196-205

    Google Scholar 

  • SzopiÅ„ska D, Jensen B, Knudsen IMB et al (2010) Non-chemical methods for controlling seedborne fungi in carrot with special reference to Alternaria radicina. J Plant Protec Res 50(2):184–192.

    Google Scholar 

  • Takahashi N, Phinney BO, MacMillan J (1991) Gibberellins. Springer, New York.

    Google Scholar 

  • Vadassery J, Ritter C, Venus Y et al (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant-Microbe Interact 21:1371–1383

    CAS  PubMed  Google Scholar 

  • Vandenbussche F, Fierro AC, Wiedemann G, Reski R, Van Der Straeten D (2007). Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol. 7: 65.

    PubMed  PubMed Central  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host–plant growth during stress. Molecules 17:10754–10773.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73 (2): 274–276.

    Google Scholar 

  • Yamagiwa Y, Toyoda K, Inagaki Y, Ichinose Y, Hyakumachi M, Shiraishi T (2011) Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol 77:336–341.

    CAS  Google Scholar 

  • Zhang X, Ferris H, Mitchell J, Liang W (2017) Ecosystem services of the soil food web after long term application of agricultural management practices. Soil Biol Biochem 111:36-43

    CAS  Google Scholar 

  • Zhou Z, Zhang C, Zhou W, Li W, Chu L, Yan J, et al. (2014) Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. Journal of Plant Interactions.;9(1):585-591.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohamed Elsharkawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elsharkawy, M.M. (2022). Plant Growth-Promoting Phoma spp.. In: Rai, M., Zimowska, B., Kövics, G.J. (eds) Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_16

Download citation

Publish with us

Policies and ethics

Navigation