Bottom Simulating Reflections in Antarctica

  • Chapter
  • First Online:
World Atlas of Submarine Gas Hydrates in Continental Margins
  • 1714 Accesses

Abstract

There are several reports of gas hydrates offshore Antarctica. These reports come from the South Shetland continental margin, the Weddel Sea, the Ross Sea continental margin and the Wilkes Land continental margin. The most intensive study of gas hydrates has been performed on the South Shetland margin, where an important gas hydrate reservoir is well-documented. The main focus of these studies has been the relationship between hydrate stability and environmental controls, including climate change. Climate changes fastest in transition zones such as the peri-Antarctic regions. This suggests that hydrate dissociation, as predicted by recent modelling offshore Antarctic Peninsula, may be most easily detected here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barker DHN, Christeson GL, Austin JA et al (2003) Back arc basin evolution and cordilleran orogenesis: insights from new ocean-bottom seismograph refraction profiling in Bransfield Strait, Antarctica. Geology 31:107–110. https://doi.org/10.1130/0091

    Article  Google Scholar 

  • Berndt C, Bunz S, Claytona T et al (2004) Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Mar Pet Geol 21:723–733

    Article  Google Scholar 

  • Bryant WR, Bennett RH, Katerman CE (1981) Shear strength, consolidation, porosity, and permeability of oceanic sediments. In: Emiliani CYamano, M., S. Uyeda, Y. Aoki, and T. H. Shipley (1982), Estimates of heat flow derived from gas hydrates, Geology, 10(7), 339– 343, doi:10.1130/0091-7613(1982)10<339:EOHFDF>2.0.CO;2 (ed) The sea, vol 7. Wiley, New York, pp 1555–1616

    Google Scholar 

  • Chapman WL, Walsh JE (2007) A synthesis of Antarctic temperatures. J Clim 20:4096–4117

    Article  Google Scholar 

  • Davies RJ, Clark IR (2006) Submarine slope failure primed and triggered by silica and its diagenesis. Basin Res 18:339–350

    Article  Google Scholar 

  • Eittreim SL, Cooper AK, Staff S (1984) Marine geological and geophysical investigations of the Antarctic Continental Margin. US Geol Surv Circ 935:12

    Google Scholar 

  • Giustiniani M, Accettella D, Tinivella U et al (2010) Geographical information system applied to geophysical data to study gas hydrate. Adv Geosci Ocean Sci 18:213–222. https://doi.org/10.1142/9789812838148_0013

    Article  Google Scholar 

  • Giustiniani M, Tinivella U, Sauli C et al (2018) (2018) Distribution of the gas hydrate stability zone in the Ross Sea, Antarctica. Andean Geol 45(1):78–86. https://doi.org/10.5027/andgeoV45n1-2989

    Article  Google Scholar 

  • Henriet JP, Mienert J (1998). Gas hydrates: relevance to world margin stability and climate change. In: Henriet J-P, Mienert J (eds) Geol Soc London 137. https://doi.org/10.1017/S0016756899561773

  • Kim Y, Kim HS, Larter RD et al (1995) Tectonic deformation in the upper crust and sediments at the South Shetland Trench. In: Cooper AK, Baker PT, Brancolini G (eds) Geology and seismic stratigraphy of the Atlantic Margin, vol 68. American Geophysical Union, pp 157–166

    Google Scholar 

  • Klepeis K, Lowver LA (1996) Tectonics of the Antarctic-Scotia plate boundary near Elephant and Clarence Islands, West Antarctica. J Geophys Res 101:20211–20231

    Article  Google Scholar 

  • Kvenvolden A (1993) Gas hydrates as a potential energy resource—a review of their methane content. United States Geological Survey, Professional Paper (United States), 1570

    Google Scholar 

  • Kvenvolden KA, Golan-Bac M, Rapp JB (1987) Hydrocarbon geochemistry of sediments offshore from Antarctica: I Wilkes Land Continental Margin. In: Eittreim SL, Hampton MA, Cooper AK et al (eds) The Antarctic continental margin: geology and geophysics of Offshore Wilkes Land and the Western Ross Sea: Cireurn-Pacific Council for Energy and Mineral Resources, Earth Sci Ser 5A:205–213

    Google Scholar 

  • Larter RD, Barker PF (1991) Effects of ridge crest-trench interaction on Antarctic-Phoenix spreading: Forces on a young subducting plate. J Geophys Res 96:19583–19607

    Article  Google Scholar 

  • Lodolo E, Camerlenghi A, Brancolini G (1993) A bottom simulating reflector on the South Shetland margin, Antarctic Peninsula. Antarct Sci 5:207–210

    Article  Google Scholar 

  • Loreto MF, Tinivella U (2012) Gas hydrate versus geological features: the South Shetland case study. Mar Pet Geol 36:164–171

    Article  Google Scholar 

  • Loreto MF, Della Vedova B, Accaino F et al (2006) Shallow geological structures on the South Shetland Trench, Antarctic Peninsula. Ofioliti 31:151–159

    Google Scholar 

  • Loreto MF, Tinivella U, Accaino F et al (2010) Correlation between geological structures and gas hydrate amount offshore the South Shetland Island—preliminary results. Adv Geosci Ocean Sci 18:223–231. https://doi.org/10.1142/9789812838148_0014

    Article  Google Scholar 

  • Loreto MF, Tinivella U, Accaino F et al (2011) Gas hydrate reservoir characterization by geophysical data analysis offshore Antarctic Peninsula. Energies 4:39–56. https://doi.org/10.3390/en4010039

    Article  Google Scholar 

  • Maldonado A, Larter RD, Aldaya F (1994) Forearc tectonic evolution of the South Shetland Margin, Antarctic Peninsula. Tectonics 13:1345–1370

    Article  Google Scholar 

  • Marín-Moreno H, Giustiniani M, Tinivella U (2015) The potential response of the hydrate reservoir in the South Shetland Margin, Antarctic Peninsula, to ocean warming over the 21st century. Polar Res 34:27443. https://doi.org/10.3402/polar.v34.27443

    Article  Google Scholar 

  • Moridis GJ, Kowalsky MB, Pruess K (2012) TOUGH-HYDRATE v1.2 user’s manual: a code for the simulation of system behavior in hydrate-bearing geological media. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA

    Google Scholar 

  • Mulvaney R, Abram NJ, Hindmarsh RC et al (2012) Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489:141–144

    Article  Google Scholar 

  • Neagu RC, Tinivella U, Volpi V et al (2009) Estimation of biogenic silica contents in marine sediments using seismic and well log data: Sediment Drift 7, Antarctica. Int J Earth Sci 98(4):839–848. https://doi.org/10.1007/s00531-008-0315-2

    Article  Google Scholar 

  • Pankhurst RJ (1990) The Paleozoic and Andean magmatic arcs of West Antarctica and southern South America. In: Kay SM, Rapela CW (eds) Plutonism from Antarctica to Alaska, vol 241. Geological Society of Amer, Boulder, CO, USA, pp 1–7

    Google Scholar 

  • Ramsay RG (1967) Folding and fracturing of rocks. McGraw-Hill, London

    Google Scholar 

  • Song S, Tinivella U, Giustiniani M et al (2018) OBS data analysis to quantify gas hydrate and free gas in the South Shetland margin (Antarctica). Energies 11. https://doi.org/10.3390/en11123290

  • Tinivella U (1999) A method for estimating gas hydrate and free gas concentrations in marine sediments. Bollettino Di Geofisica Teorica Ed Applicata 40:19–30

    Google Scholar 

  • Tinivella U (2002) The seismic response to overpressure versus gas hydrate and free gas concentration. J Seism Explor 11:283–305

    Google Scholar 

  • Tinivella U (2011) Antarctic campaign on board of Korean Araon icebreaker. OGS Report 2011/29 – GDL 9 REDAS

    Google Scholar 

  • Tinivella U, Accaino F (2000) Compressional velocity structure and Poisson’s ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica). Mar Geol 164:13–27

    Article  Google Scholar 

  • Tinivella U, Carcione JM (2001) Estimation of gas-hydrate concentration and free-gas saturation from log and seismic data. Lead Edge 20:200–203. https://doi.org/10.1190/1.1438914

    Article  Google Scholar 

  • Tinivella U, Giustiniani M (2012) An overview of mud volcanoes associated to gas hydrate system. In: Updates in volcanology—new advances in understanding volcanic systems. https://doi.org/10.5772/51270

  • Tinivella U, Giustiniani M (2013) Variations in BSR depth due to gas hydrate stability versus pore pressure. Glob Planet Change 100:119–128. https://doi.org/10.1016/j.gloplacha.2012.10.012

    Article  Google Scholar 

  • Tinivella U, Accaino F, Della Vedova B (2008) Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula. Geo Mar Lett 28:97–106

    Google Scholar 

  • Tinivella U, Giustiniani M, Accettella D (2011) BSR versus climate change and slides. J Geol Res 2011:390547.https://doi.org/10.1155/2011/39054

  • Tinivella U, Loreto MF, Accaino F (2009) Regional versus detailed velocity analysis to quantify hydrate and free gas in marine sediments: the South Shetland Margin case study. In: Sediment-hosted gas hydrates: new insights on natural and synthetic systems, vol 319, pp 103–119

    Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM et al (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Volpi V, Camerlenghi A, Hillenbrand CD et al (2003) Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula. Basin Res 15:339–363

    Article  Google Scholar 

  • Yamamoto K (2015) Overview and introduction: pressure core-sampling and analyses in the 2012–2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough. Mar Pet Geol 66:296–309

    Article  Google Scholar 

  • Yin J, Overpeck JT, Griffies SM et al (2011) Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nat Geosci 4:524–528

    Article  Google Scholar 

  • Yamano M, Uyeda S, Aoki Y, Shipley TH (1982) Estimates of heat flow derived from gas hydrates. Geology 10(7):339–343. https://doi.org/10.1130/0091-7613(1982)10<339:EOHFDF>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to all of the colleagues that contributed to my knowledge of gas hydrates in Antarctica. In particular, in alphabetic order: Flavio Accaino (OGS, Italy), Daniela Accettella (OGS, Italy), Angelo Camerlenghi (OGS, Italy), Michela Giustiniani (OGS, Italy), Emanuele Lodolo (OGS, Italy), Maria Filomena Loreto (former OGS, Italy, now Istituto di Scienze Marine, CNR, Italy), Hector Marin-Moreno (former OGS, Italy, now Norwegian Geotechnical Institute, Norway), Jong Kuk Hong (Korea Polar Research Institute, Korea), Xuewei Liu (China University of Geosciences, China), Cristina Neagu (former OGS, Italy), Sha Song (former OGS, Italy, now Chang’an University, China). The research in Antarctica has been partially supported by the Programma Nazionale di Ricerche in Antartide (PNRA), the Ministry of Foreign Affairs, the TALENTS FVG Programme - European Social Fund, and the Ministry of Education, Universities and Research under the grant for Italian participation in the activities related to the international infrastructure Partnership for Advanced Computing in Europe (PRACE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberta Tinivella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tinivella, U. (2022). Bottom Simulating Reflections in Antarctica. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_42

Download citation

Publish with us

Policies and ethics

Navigation