Intermittency—A State That Precedes Thermoacoustic Instability and Blowout in Turbulent Combustors

  • Chapter
  • First Online:
Thermoacoustic Instability

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 975 Accesses

Abstract

Let us recall from Chaps. 3 and 4 that during the onset of thermoacoustic instability in laminar systems, the dynamics of the acoustic pressure fluctuations transitions from a state of fixed point to limit cycle oscillations. We observed that this transition in the acoustic pressure fluctuations is direct without the presence of an intermediate state. Additionally, the transition is accompanied by a sudden jump in the pressure amplitude for subcritical Hopf bifurcation or a gradual increase in the pressure amplitude for supercritical Hopf bifurcation. In the present chapter, we will focus on understanding the dynamical changes happening in the acoustic pressure fluctuations during the occurrence of thermoacoustic instability in turbulent thermoacoustic systems. We will first systematically characterize the properties of acoustic pressure fluctuations during the states of stable operation and unstable operation of a turbulent combustor. Subsequently, we will discuss the characteristics of the dynamical transition from stable to unstable operation, and also the properties of the state of intermittency. We will also shed light on the route to the occurrence of another undesired dynamic phenomenon called lean flame blowout. Finally, we will present a universal scaling observed in acoustic pressure fluctuations during the onset of thermoacoustic instability in different turbulent combustors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., Tsimring, L.S.: The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65(4), 1331 (1993)

    Google Scholar 

  2. Anderson, W.E., Yang, V.: Liquid Rocket Engine Combustion Instability, vol. 169. Progress in Astronautics and Aeronautics, AIAA, Washington, DC (1995)

    Google Scholar 

  3. Aoki, C., Gotoda, H., Yoshida, S., Tachibana, S.: Dynamic behavior of intermittent combustion oscillations in a model rocket engine combustor. J. Appl. Phys. 127(22), 224903 (2020)

    Google Scholar 

  4. Bragg, S.L.: Combustion noise. J. Inst. Fuel 36(1), 12–16 (1963)

    Google Scholar 

  5. Burnley, V.S., Culick, F.E.C.: Influence of random excitations on acoustic instabilities in combustion chambers. AIAA J. 38(8), 1403–1410 (2000)

    Google Scholar 

  6. Candel, S.: Combustion instabilities coupled by pressure waves and their active control. In: Symposium (International) on Combustion, vol. 24, pp. 1277–1296. Elsevier (1992)

    Google Scholar 

  7. Candel, S.: Combustion dynamics and control: Progress and challenges. Proc. Combust. Inst. 29(1), 1–28 (2002)

    Google Scholar 

  8. Candel, S., Durox, D., Ducruix, S., Birbaud, A.L., Noiray, N., Schuller, T.: Flame dynamics and combustion noise: Progress and challenges. Int. J. Aeroacoust. 8(1), 1–56 (2009)

    Google Scholar 

  9. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110(1-2), 43–50 (1997)

    Google Scholar 

  10. Chakravarthy, S.R., Sivakumar, R., Shreenivasan, O.J.: Vortex-acoustic lock-on in bluff-body and backward-facing step combustors. Sadhana 32(1), 145–154 (2007)

    Google Scholar 

  11. Chaudhuri, S., Kostka, S., Renfro, M.W., Cetegen, B.M.: Blowoff dynamics of bluff body stabilized turbulent premixed flames. Combust. Flame 157(4), 790–802 (2010)

    Google Scholar 

  12. Chiu, H.H., Summerfield, M.: Theory of combustion noise. Acta Astronaut. 1(7-8), 967–984 (1974)

    Google Scholar 

  13. Clavin, P., Siggia, E.D.: Turbulent premixed flames and sound generation. Combust. Sci. Tech. 78(1-3), 147–155 (1991)

    Google Scholar 

  14. Clavin, P., Kim, J.S., Williams, F.A.: Turbulence-induced noise effects on high-frequency combustion instabilities. Combust. Sci. Tech. 96(1-3), 61–84 (1994)

    Google Scholar 

  15. Coats, C.M.: Coherent structures in combustion. Prog. Energy Combust. Sci. 22(5), 427–509 (1996)

    Google Scholar 

  16. Culick, F.E.C.: Unsteady motions in combustion chambers for propulsion systems. Tech. rep., AGARDograph, NATO/RTO-AG-AVT-039 (2006)

    Google Scholar 

  17. Culick, F.E.C., Yang, V.: Overview of combustion instabilities in liquid-propellant rocket engines. In: Liquid Rocket Engine Combustion Instability, vol. 169, pp. 3–37. Progress in Astronautics and Aeronautics, AIAA Washington, DC (1995)

    Google Scholar 

  18. Datta, S., Mondal, S., Mukhopadhyay, A., Sanyal, D., Sen, S.: An investigation of nonlinear dynamics of a thermal pulse combustor. Combust. Theor. Model. 13(1), 17–38 (2009)

    Google Scholar 

  19. Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969–3973 (1995)

    Google Scholar 

  20. De, S., Bhattacharya, A., Mondal, S., Mukhopadhyay, A., Sen, S.: Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor. Chaos 30(4), 043115 (2020)

    Google Scholar 

  21. Delage, R., Takayama, Y., Biwa, T.: On–off intermittency in coupled chaotic thermoacoustic oscillations. Chaos 27(4), 043111 (2017)

    Google Scholar 

  22. Domen, S., Gotoda, H., Kuriyama, T., Okuno, Y., Tachibana, S.: Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory. Proc. Combust. Inst. 35(3), 3245–3253 (2015)

    Google Scholar 

  23. Dowling, A.P.: Flow-acoustic interaction near a flexible wall. J. Fluid Mech. 128, 181–198 (1983)

    Google Scholar 

  24. Dowling, A.P., Ffowcs Williams, J.E.: Sound and Sources of Sound. Horwood (1983)

    Google Scholar 

  25. Dowling, A.P., Mahmoudi, Y.: Combustion noise. Proc. Combust. Inst. 35(1), 65–100 (2015)

    Google Scholar 

  26. Dranovsky, M.L., Agarkov, A.F., Denisov, K.P., Zavorohin, I.A., Ivanov, V.N., Pikalov, V.P., Shibanov, A.A.: Injector flame stabilization effects on combustion instability. In: Liquid Rocket Engine Combustion Instability, vol. 169. Progress in Astronautics and Aeronautics, AIAA, Washington, DC (1994)

    Google Scholar 

  27. Duran, I., Moreau, S., Nicoud, F., Livebardon, T., Bouty, E., Poinsot, T.: Combustion noise in modern aero-engines. Aerosp. Lab. J. 7, 1–11 (2014)

    Google Scholar 

  28. Ebi, D., Denisov, A., Bonciolini, G., Boujo, E., Noiray, N.: Flame dynamics intermittency in the bistable region near a subcritical Hopf bifurcation. J. Eng. Gas Turbines Power 140(6) (2018)

    Google Scholar 

  29. George, N.B., Unni, V.R., Raghunathan, M., Sujith, R.I.: Pattern formation during transition from combustion noise to thermoacoustic instability via intermittency. J. Fluid Mech. 849, 615–644 (2018)

    Google Scholar 

  30. Gotoda, H., Nikimoto, H., Miyano, T., Tachibana, S.: Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21(1), 013124 (2011)

    Google Scholar 

  31. Gotoda, H., Amano, M., Miyano, T., Ikawa, T., Maki, K., Tachibana, S.: Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor. Chaos 22(4), 043128 (2012)

    Google Scholar 

  32. Gotoda, H., Shinoda, Y., Kobayashi, M., Okuno, Y., Tachibana, S.: Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89(2), 022910 (2014)

    Google Scholar 

  33. Gotoda, H., Hayashi, K., Tsujimoto, R., Domen, S., Tachibana, S.: Dynamical properties of combustion instability in a laboratory-scale gas-turbine model combustor. J. Eng. Gas Turbines Power 139(4), 041509 (2017)

    Google Scholar 

  34. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. A 460(2042), 603–611 (2004)

    Google Scholar 

  35. Gottwald, G.A., Melbourne, I.: The 0-1 test for chaos: A review. In: Chaos Detection and Predictability, pp. 221–247. Springer (2016)

    Google Scholar 

  36. Guan, Y., Liu, P., **, B., Gupta, V., Li, L.K.B.: Nonlinear time-series analysis of thermoacoustic oscillations in a solid rocket motor. Exp. Therm. Fluid Sci. 98, 217–226 (2018)

    Google Scholar 

  37. Guan, Y., Li, L.K.B., Ahn, B., Kim, K.T.: Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode. Chaos 29(5), 053124 (2019)

    Google Scholar 

  38. Guan, Y., Gupta, V., Li, L.K.B.: Intermittency route to self-excited chaotic thermoacoustic oscillations. J. Fluid Mech. 894, R3 (2020)

    Google Scholar 

  39. Hassan, H.A.: Scaling of combustion-generated noise. J. Fluid Mech. 66(3), 445–453 (1974)

    Google Scholar 

  40. Hegde, U.G., Reuter, D., Daniel, B.R., Zinn, B.T.: Flame driving of longitudinal instabilities in dump type ramjet combustors. Combust. Sci. Tech. 55(4-6), 125–138 (1987)

    Google Scholar 

  41. Hegde, U.G., Reuter, D., Zinn, B.T.: Sound generation by ducted flames. AIAA J. 26(5), 532–537 (1988)

    Google Scholar 

  42. Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press (2000)

    Google Scholar 

  43. Juniper, M.P., Sujith, R.I.: Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50, 661–689 (2018)

    Google Scholar 

  44. Kabiraj, L., Sujith, R.I.: Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376–397 (2012)

    Google Scholar 

  45. Kabiraj, L., Saurabh, A., Wahi, P., Sujith, R.I.: Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22(2), 023129 (2012)

    Google Scholar 

  46. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316(1-4), 87–114 (2002)

    Google Scholar 

  47. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, vol. 7. Cambridge University Press (2004)

    Google Scholar 

  48. Kaplan, D.T., Glass, L.: Direct test for determinism in a time series. Phys. Rev. Lett. 68(4), 427–430 (1992)

    Google Scholar 

  49. Kasthuri, P., Pavithran, I., Pawar, S.A., Sujith, R.I., Gejji, R., Anderson, W.: Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor. Chaos 29(10), 103115 (2019)

    Google Scholar 

  50. Kasthuri, P., Unni, V.R., Sujith, R.I.: Bursting and mixed mode oscillations during the transition to limit cycle oscillations in a matrix burner. Chaos 29(4), 043117 (2019)

    Google Scholar 

  51. Ken, H.Y., Trouvé, A., Daily, J.W.: Low-frequency pressure oscillations in a model ramjet combustor. J. Fluid Mech. 232, 47–72 (1991)

    Google Scholar 

  52. Kerres, B., Nair, V., Cronhjort, A., Mihaescu, M.: Analysis of the turbocharger compressor surge margin using a Hurst-exponent-based criterion. SAE Int. J. Engines 9(3), 1795–1806 (2016)

    Google Scholar 

  53. Ketterle, W.: Experimental studies of Bose-Einstein condensation. Phys. Today 52(12), 30–35 (1999)

    Google Scholar 

  54. Kheirkhah, S., Cirtwill, J.D.M., Saini, P., Venkatesan, K., Steinberg, A.M.: Dynamics and mechanisms of pressure, heat release rate, and fuel spray coupling during intermittent thermoacoustic oscillations in a model aeronautical combustor at elevated pressure. Combust. Flame 185, 319–334 (2017)

    Google Scholar 

  55. Kings, N., Bake, F.: Indirect combustion noise: noise generation by accelerated vorticity in a nozzle flow. J. Spray Combust. Dyn. 2(3), 253–266 (2010)

    Google Scholar 

  56. Klimaszewska, K., Żebrowski, J.J.: Detection of the type of intermittency using characteristic patterns in recurrence plots. Phys. Rev. E 80(2), 026214 (2009)

    Google Scholar 

  57. Kobayashi, H., Gotoda, H., Tachibana, S.: Nonlinear determinism in degenerated combustion instability in a gas-turbine model combustor. Physica A 510, 345–354 (2018)

    Google Scholar 

  58. Kobayashi, T., Murayama, S., Hachijo, T., Gotoda, H.: Early detection of thermoacoustic combustion instability using a methodology combining complex networks and machine learning. Phys. Rev. Appl. 11(6), 064034 (2019)

    Google Scholar 

  59. Kotake, S.: On combustion noise related to chemical reactions. J. Sound Vib. 42(3), 399–410 (1975)

    Google Scholar 

  60. Krishnan, A., Sujith, R.I., Marwan, N., Kurths, J.: On the emergence of large clusters of acoustic power sources at the onset of thermoacoustic instability in a turbulent combustor. J. Fluid Mech. 874, 455–482 (2019)

    Google Scholar 

  61. Kumar, R.: Further experimental results on the structure and acoustics of turbulent jet flames. In: 2nd Aeroacoustics Conference, AIAA 1975-523 (1975)

    Google Scholar 

  62. Langhorne, P.J.: Reheat buzz: an acoustically coupled combustion instability. Part 1. Experiment. J. Fluid Mech. 193, 417–443 (1988)

    Google Scholar 

  63. Law, C.K.: Combustion Physics. Cambridge University Press (2010)

    Google Scholar 

  64. Lieuwen, T.C.: Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. J. Propuls. Power 18(1), 61–67 (2002)

    Google Scholar 

  65. Lieuwen, T.C.: Statistical characteristics of pressure oscillations in a premixed combustor. J. Sound Vib. 260(1), 3–17 (2003)

    Google Scholar 

  66. Lieuwen, T.C.: Static and dynamic combustion stability. The Gas Turbine Handbook, pp. 197–203 (2006)

    Google Scholar 

  67. Lieuwen, T., Banaszuk, A.: Background noise effects on combustor stability. J. Propuls. Power 21(1), 25–31 (2005)

    Google Scholar 

  68. Lieuwen, T.C., Yang, V.: Combustion Instabilities in Gas Turbine Engines (Operational Experience, Fundamental Mechanisms and Modeling), vol. 210. Progress in Astronautics and Aeronautics, AIAA (2005)

    Google Scholar 

  69. Longwell, J.P., Frost, E.E., Weiss, M.A.: Flame stability in bluff body recirculation zones. Ind. Eng. Chem. Res. 45(8), 1629–1633 (1953)

    Google Scholar 

  70. Macquisten, M.A., Dowling, A.P.: Low-frequency combustion oscillations in a model afterburner. Combust. Flame 94(3), 253–264 (1993)

    Google Scholar 

  71. Marble, F.E., Candel, S.M.: Acoustic disturbance from gas non-uniformities convected through a nozzle. J. Sound Vib. 55(2), 225–243 (1977)

    Google Scholar 

  72. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)

    Google Scholar 

  73. Mondal, S., Unni, V.R., Sujith, R.I.: Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states. J. Fluid Mech. 811, 659–681 (2017)

    Google Scholar 

  74. Mukhopadhyay, A., Chaudhari, R.R., Paul, T., Sen, S., Ray, A.: Lean blow-out prediction in gas turbine combustors using symbolic time series analysis. J. Propuls. Power 29(4), 950–960 (2013)

    Google Scholar 

  75. Muruganandam, T.: Sensing and dynamics of lean blowout in a swirl dump combustor. Ph.D. thesis (2006)

    Google Scholar 

  76. Muruganandam, T.M., Nair, S., Scarborough, D., Neumeier, Y., Jagoda, J., Lieuwen, T., Seitzman, J., Zinn, B.: Active control of lean blowout for turbine engine combustors. J. Propuls. Power 21(5), 807–814 (2005)

    Google Scholar 

  77. Murugesan, M., Sujith, R.I.: Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability. J. Fluid Mech. 772, 225–245 (2015)

    Google Scholar 

  78. Murugesan, M., Sujith, R.I.: Physical mechanisms that cause intermittency that presages combustion instability and blowout in a turbulent lifted jet flame combustor. Combust. Sci. Tech. 190(2), 312–335 (2018)

    Google Scholar 

  79. Nair, S.: Acoustic characterization of flame blowout phenomenon. Ph.D. thesis, Georgia Institute of Technology, USA (2006)

    Google Scholar 

  80. Nair, V.: Role of intermittent dynamics in the onset of combustion instability. Ph.D. thesis, Indian Institute of Technology Madras, India (2014)

    Google Scholar 

  81. Nair, S., Lieuwen, T.: Acoustic detection of blowout in premixed flames. J. Propuls. Power 21(1), 32–39 (2005)

    Google Scholar 

  82. Nair, V., Sujith, R.I.: Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos 23(3), 033136 (2013)

    Google Scholar 

  83. Nair, V., Sujith, R.I.: Multifractality in combustion noise: predicting an impending combustion instability. J. Fluid Mech. 747, 635–655 (2014)

    Google Scholar 

  84. Nair, V., Sujith, R.I.: Intermittency as a transition state in combustor dynamics: An explanation for flame dynamics near lean blowout. Combust. Sci. Tech. 187(11), 1821–1835 (2015)

    Google Scholar 

  85. Nair, V., Sujith, R.I.: Precursors to self-sustained oscillations in aeroacoustic systems. Int. J. Aeroacoust. 15(3), 312–323 (2016)

    Google Scholar 

  86. Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S., Sujith, R.I.: Loss of chaos in combustion noise as a precursor of impending combustion instability. J. Spray Combust. Dyn. 5(4), 273–290 (2013)

    Google Scholar 

  87. Nair, V., Thampi, G., Sujith, R.I.: Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470–487 (2014)

    Google Scholar 

  88. Noiray, N., Schuermans, B.: Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Int. J. Nonlin. Mech. 50, 152–163 (2013)

    Google Scholar 

  89. Pavithran, I., Unni, V.R., Varghese, A.J., Premraj, D., Sujith, R.I., Vijayan, C., Saha, A., Marwan, N., Kurths, J.: Universality in spectral condensation. Sci. Rep. 10(1), 1–8 (2020)

    Google Scholar 

  90. Pavithran, I., Unni, V.R., Varghese, A.J., Sujith, R.I., Saha, A., Marwan, N., Kurths, J.: Universality in the emergence of oscillatory instabilities in turbulent flows. Europhys. Lett. 129(2), 24004 (2020)

    Google Scholar 

  91. Pawar, S.A., Vishnu, R., Vadivukkarasan, M., Panchagnula, M.V., Sujith, R.I.: Intermittency route to combustion instability in a laboratory spray combustor. J. Eng. Gas Turbines Power 138(4), 041505 (2016)

    Google Scholar 

  92. Pawar, S.A., Seshadri, A., Unni, V.R., Sujith, R.I.: Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow. J. Fluid Mech. 827, 664–693 (2017)

    Google Scholar 

  93. Pawar, S.A., Mondal, S., George, N.B., Sujith, R.I.: Temporal and spatiotemporal analyses of synchronization transition in a swirl-stabilized combustor. AIAA J. 57(2), 836–847 (2019)

    Google Scholar 

  94. Pawar, S.A., Raghunathan, M., Reeja, K.V., Midhun, P.R., Sujith, R.I.: Effect of preheating of the reactants on the transition to thermoacoustic instability in a bluff-body stabilized dump combustor. Proc. Combust. Inst. 38(4), 6193–6201 (2021)

    Google Scholar 

  95. Plee, S.L., Mellor, A.M.: Characteristic time correlation for lean blowoff of bluff-body-stabilized flames. Combust. Flame 35, 61–80 (1979)

    Google Scholar 

  96. Poinsot, T.: Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36(1), 1–28 (2017)

    Google Scholar 

  97. Poinsot, T.J., Trouve, A.C., Veynante, D.P., Candel, S.M., Esposito, E.J.: Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265–292 (1987)

    Google Scholar 

  98. Polifke, W.: Combustion instabilities. In: Advances in Aeroacoustics and Applications, vol. 5. Von Karman Institute Rhode-St-Genèse, BE (2004)

    Google Scholar 

  99. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74(2), 189–197 (1980)

    Google Scholar 

  100. Premchand, C.P., George, N.B., Raghunathan, M., Unni, V.R., Sujith, R.I., Nair, V.: Lagrangian analysis of intermittent sound sources in the flow-field of a bluff-body stabilized combustor. Phys. Fluids 31(2), 025115 (2019)

    Google Scholar 

  101. Premraj, D., Pawar, S.A., Kabiraj, L., Sujith, R.I.: Strange nonchaos in self-excited singing flames. Europhys. Lett. 128(5), 54005 (2020)

    Google Scholar 

  102. Premraj, D., Suresh, K., Pawar, S.A., Kabiraj, L., Prasad, A., Sujith, R.I.: Dragon-king extreme events as precursors for catastrophic transition. Europhys. Lett. 134(3), 34006 (2021)

    Google Scholar 

  103. Putnam, A.A.: Combustion Driven Oscillations in Industry. Elsevier Publishing (1971)

    Google Scholar 

  104. Putnam, A., Faulkner, L.: Overview of combustion noise. J. Energy 7(6), 458–469 (1983)

    Google Scholar 

  105. Radhakrishnan, K., Heywood, J.B., Tabaczynski, R.J.: Premixed turbulent flame blowoff velocity correlation based on coherent structures in turbulent flows. Combust. Flame 42, 19–33 (1981)

    Google Scholar 

  106. Rajaram, R.: Characteristics of sound radiation from turbulent premixed flames. Ph.D. thesis, Georgia Institute of Technology, USA (2007)

    Google Scholar 

  107. Rock, N., Emerson, B., Seitzman, J., Lieuwen, T.: Near-lean blowoff dynamics in a liquid fueled combustor. Combust. Flame 212, 53–66 (2020)

    Google Scholar 

  108. Rogers, D.E., Marble, F.E.: A mechanism for high frequency oscillations in ramjet combustors and afterburners. J. Jet Propuls. 26(1), 456–462 (1956)

    Google Scholar 

  109. Roy, A., Singh, S., Nair, A., Chaudhuri, S., Sujith, R.I.: Flame dynamics during intermittency and secondary bifurcation to longitudinal thermoacoustic instability in a swirl-stabilized annular combustor. Proc. Combust. Inst. 38(4), 6221–6230 (2021)

    Google Scholar 

  110. Sampath, R., Chakravarthy, S.R.: Investigation of intermittent oscillations in a premixed dump combustor using time-resolved particle image velocimetry. Combust. Flame 172, 309–325 (2016)

    Google Scholar 

  111. Sarkar, S., Ray, A., Mukhopadhyay, A., Sen, S.: Dynamic data-driven prediction of lean blowout in a swirl-stabilized combustor. J. Spray Combust. Dyn. 7(3), 209–241 (2015)

    Google Scholar 

  112. Schadow, K.C., Gutmark, E.: Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18(2), 117–132 (1992)

    Google Scholar 

  113. Schuster, H.G., Just, W.: Deterministic Chaos: An Introduction. Wiley (2006)

    Google Scholar 

  114. Sen, U., Gangopadhyay, T., Bhattacharya, C., Mukhopadhyay, A., Sen, S.: Dynamic characterization of a ducted inverse diffusion flame using recurrence analysis. Combust. Sci. Tech. 190(1), 32–56 (2018)

    Google Scholar 

  115. Shanbhogue, S.J., Husain, S., Lieuwen, T.: Lean blowoff of bluff body stabilized flames: Scaling and dynamics. Prog. Energy Combust. Sci. 35(1), 98–120 (2009)

    Google Scholar 

  116. Shivashankara, B., Strahle, W., Handley, J.: Combustion noise radiation by open turbulent flames. In: Aeroacoustics Conference, AIAA 1973-1025 (1973)

    Google Scholar 

  117. Singh, G., Mariappan, S.: Experimental investigation on the route to vortex-acoustic lock-in phenomenon in bluff body stabilized combustors. Combust. Sci. Tech., 1–29 (2019)

    Google Scholar 

  118. Smith, T.J.B., Kilham, J.K.: Noise generation by open turbulent flames. J. Acoust. Soc. Am. 35(5), 715–724 (1963)

    Google Scholar 

  119. Smith, D.A., Zukoski, E.E.: Combustion instability sustained by unsteady vortex combustion. In: 21st Joint Propulsion Conference, AIAA 1985-1248 (1985)

    Google Scholar 

  120. Spalding, D.B.: Some Fundamentals of Combustion, vol. 2. Butterworths Scientific Publications (1955)

    Google Scholar 

  121. Stone, E., Gorman, M., El-Hamdi, M., Robbins, K.A.: Identification of intermittent ordered patterns as heteroclinic connections. Phys. Rev. Lett. 76(12), 2061–2064 (1996)

    Google Scholar 

  122. Strahle, W.C.: On combustion generated noise. In: 7th Propulsion Joint Specialist Conference, AIAA 1971-735 (1971)

    Google Scholar 

  123. Strahle, W.C.: Combustion noise. Prog. Energy Combust. Sci. 4(3), 157–176 (1978)

    Google Scholar 

  124. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press (1994)

    Google Scholar 

  125. Sujith, R.I., Unni, V.R.: Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors. Phys. Fluids 32(6), 061401 (2020)

    Google Scholar 

  126. Taamallah, S., LaBry, Z.A., Shanbhogue, S.J., Ghoniem, A.F.: Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures. Proc. Combust. Inst. 35(3), 3273–3282 (2015)

    Google Scholar 

  127. Takens, F.: Detecting strange attractors in turbulence. Lect. Notes Math. 898(1), 366–381 (1981)

    Google Scholar 

  128. Tandon, S., Pawar, S.A., Banerjee, S., Varghese, A.J., Durairaj, P., Sujith, R.I.: Bursting during intermittency route to thermoacoustic instability: Effects of slow–fast dynamics. Chaos 30(10), 103112 (2020)

    Google Scholar 

  129. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.: Testing for nonlinearity in time series: the method of surrogate data. Physica D 58(1-4), 77–94 (1992)

    Google Scholar 

  130. Tony, J., Gopalakrishnan, E.A., Sreelekha, E., Sujith, R.I.: Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E 92(6), 062902 (2015)

    Google Scholar 

  131. Toong, T.Y.: Instabilities in reacting flows. Acta Astronaut. 1(3-4), 317–344 (1974)

    Google Scholar 

  132. Unni, V.R., Sujith, R.I.: Multifractal characteristics of combustor dynamics close to lean blowout. J. Fluid Mech. 784, 30–50 (2015)

    Google Scholar 

  133. Unni, V.R., Sujith, R.I.: Flame dynamics during intermittency in a turbulent combustor. Proc. Combust. Inst. 36(3), 3791–3798 (2017)

    Google Scholar 

  134. Venkatramani, J., Nair, V., Sujith, R.I., Gupta, S., Sarkar, S.: Precursors to flutter instability by an intermittency route: a model free approach. J. Fluids Struct. 61, 376–391 (2016)

    Google Scholar 

  135. Wayland, R., Bromley, D., Pickett, D., Passamante, A.: Recognizing determinism in a time series. Phys. Rev. Lett. 70(5), 580–582 (1993)

    Google Scholar 

  136. Weng, F., Makeximu, Li, D., Zhu, M.: Low frequency beating instability in a Rijke burner and its active control. J. Low Freq. Noise Vibr. Act. Control 34(2), 137–152 (2015)

    Google Scholar 

  137. Wilhite, J.M., Dolan, B.J., Kabiraj, L., Gomez, R.V., Gutmark, E.J., Paschereit, C.O.: Analysis of combustion oscillations in a staged MLDI burner using decomposition methods and recurrence analysis. In: 54th AIAA Aerospace Sciences Meeting, AIAA 2016-1156 (2016)

    Google Scholar 

  138. Zhang, Q., Shanbhogue, S.J., Lieuwen, T.: Dynamics of premixed h2/ch4 flames under near blowoff conditions. J. Eng. Gas Turbines Power 132(11) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sujith, R.I., Pawar, S.A. (2021). Intermittency—A State That Precedes Thermoacoustic Instability and Blowout in Turbulent Combustors. In: Thermoacoustic Instability. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-030-81135-8_6

Download citation

Publish with us

Policies and ethics

Navigation