Development of a Data Acquisition System for Monitoring Environmental Parameters of Laboratories

  • Conference paper
  • First Online:
International Youth Conference on Electronics, Telecommunications and Information Technologies

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 268))

  • 616 Accesses

Abstract

Currently, industrial sensors employing RS-485 communication channel are widely used. A large variety of such sensors allows a wide range of tasks to be solved. The RS-485 communication link allows the simultaneous use of up to 128 sensors, which in turn leads to the need for a data acquisition system, as well as the output of these sensors in a convenient form for the end-user. In accordance with this, this paper is devoted to the development of a sensor data acquisition system using an RS-485 communication channel. This data acquisition system contains an RS-485 communication link, an Ethernet link for data output to the end user, and a USB link used for debugging and controlling the board firmware. The control board uses a single-board computer Raspberry PI compute Module 3. This article discusses the main protection schemes of the channels used, the main schemes necessary for the correct operation of Raspberry Pi Compute Module 3, as well as the basic principles of the data acquisition system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O.S. Antonova, G.E. Rudnidskya, A.N. Tupik, A.L. Bylianitsa, V.E. Evstrapov, Polymerase chain reaction: devices and methods. A systematic review of literature. Sci. Instrum 21(4), 5–21 (2011)

    Google Scholar 

  2. V.V. Davydov, N.S. Myazin, A.V. Kiryukhin, Nuclear-Magnetic Flowmeter—Relaxometers for monitoring coolant and feedwater flow and status in Npp. At. Energ. 127(5), 274–279 (2020)

    Article  Google Scholar 

  3. V.V. Davydov, N.S. Myazin, V.N. Dudkin, R.V. Davydov, Peculiarities of monitoring the state of a flowing medium by the method of nuclear magnetic resonance. Tech. Phys. Lett. 46(1), 55–58 (2020)

    Article  ADS  Google Scholar 

  4. N.S. Myazin, V.V. Davydov, V.V. Yushkova, N.I. Taranda, VYu. Rud, On the need to control the state of the flowing media by the values of relaxation constants. J. Phys.: Conf. Ser. 1410(1), 012130 (2019)

    Google Scholar 

  5. V.V. Davydov, N.S. Myazin, E.N. Velichko, Characteristics of spectrum registration of condensed medium by the method of nuclear-magnetic resonance in a weak field. Tech. Phys. Lett. 43(7), 607–610 (2019)

    Article  ADS  Google Scholar 

  6. N.S. Myazin, V.I. Dudkin, N.M. Grebenikova, V.V. Davydov, V.Y. Rud’, A.S. Podstrigaev, Fiber—Optical System for Governance and Control of Work for Nuclear Power Stations of Low Power, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11660 (LNCS, 2019), pp. 744–756

    Google Scholar 

  7. V.V. Davydov, N.S. Myazin, S.E. Logunov, V.B. Fadeenko, A contactless method for testing inner walls of pipelines. Russ. J. Nondestr. Test. 54(3), 213–221 (2018)

    Article  Google Scholar 

  8. G.L. Klimchitskaya, V.M. Mostepanenko, E.K. Nepomnyashchaya, E.N. Velichko, Impact of magnetic nanoparticles on the Casimir pressure in three-layer systems. Phys. Rev. B 99(4), 045433 (2019)

    Article  ADS  Google Scholar 

  9. V.V. Davydov, N.S. Myazin, V.I. Dudkin, E.N. Velichko, Investigation of condensed media in weak fields by the method of nuclear magnetic resonance. Russ. Phys. J. 61(1), 162–168 (2018)

    Article  Google Scholar 

  10. N. Myazin, Y. Neronov, V. Dudkin, V. Davydov, V. Yushkova, Environmental express monitoring of territory and water bodies at various stages of construction and improvement. MATEC Web Conf. 245, 11013 (2018)

    Article  Google Scholar 

  11. B. Gizatullin, M. Gafurov, A. Rodionov, G. Mamin, C. Mattea, S. Stapf, S. Orlinskii, Proton-radical interaction in crude oil—a combined NMR and EPR study. Energy Fuels 32(11), 11261–11268 (2018)

    Article  Google Scholar 

  12. S.V. Dyachenko, M.A. Vaseshenkova, K.D. Martinson, I.A. Cherepkova, A.I. Zhernovoi, Synthesis and properties of magnetic fluids produced on the basis of magnetite particles. Russ. J. Appl. Chem. 89(5), 690–696 (2016)

    Article  Google Scholar 

  13. F. Shariaty, M. Baranov, E. Velichko, M. Galeeva, V. Pavlov, Radiomics: extracting more features using endoscopic imaging, in 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) (2019), pp. 181–194

    Google Scholar 

  14. E.A. Savchenko, A.N. Skvortsov, E.N. Velichko, E.Yu. Savchenko, Determination of electrophoretic mobilities by DLS: Homodyne vs Heterodyne setup, in 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) (IEEE, 2019), pp. 315–317

    Google Scholar 

  15. M.A. Baranov, E.N. Velichko, A.A. Andryakov, Image processing for analysis of bio-liquid films. Opt. Mem. Neural Netw. (Inform. Opt.) 29(1), 26–32 (2020)

    Google Scholar 

  16. E. Savchenko, E. Velichko, New techniques for measuring zeta-potential of colloidal system, in Saratov Fall Meeting 2018: Optical and Nano-Technologies for Biology and Medicine. International Society for Optics and Photonics, vol. 11065 (2019), p. 110651U

    Google Scholar 

  17. E.A. Savchenko, E.N. Velichko, E.T. Aksenov, E.K. Nepomnyashchaya, Combined method for laser selection, positioning and analysis of micron and submicron cells and particles, in 2018 International Conference Laser Optics (IEEE, 2019), pp. 539–539

    Google Scholar 

  18. A.A. Petrov, V.V. Davydov, N.M. Grebennikova, On the potential application of direct digital synthesis in the development of frequency synthesizers for quantum frequency standards. J. Commun. Technol. Electron. 63(11), 1281–1285 (2018)

    Article  Google Scholar 

  19. N.S. Myazin, V.V. Davydov, VYu. Rud, V.V. Yushkova, V.I. Dudkin, New method for determining the composition of liquid media during the express control of their state using the nuclear magnetic resonance phenomena. J. Phys.: Conf. Ser. 1400(6), 066008 (2019)

    Google Scholar 

  20. V.V. Davydov, Nuclear magnetic spectrometer for studying flows of liquid media. Meas. Tech. 59(1), 1202–1209 (2017)

    Article  MathSciNet  Google Scholar 

  21. R.V. Davydov, M.S. Mazing, V.V. Yushkova, A.V. Stirmanov, VYu. Rud, A new method for monitoring the health condition based on nondestructive signals of laser radiation absorption and scattering. J. Phys.: Conf. Ser. 1410(1), 012067 (2019)

    Google Scholar 

  22. A.S. Grevtseva, K.J. Smirnov, V.V. Davydov, VYu. Rud, Development of methods for results reliability raise during the diagnosis of a person’s condition by pulse oximeter. J. Phys.: Conf. Ser. 1135(1), 012056 (2018)

    Google Scholar 

  23. V.V. Davydov, E.N. Velichko, N.S. Myazin, V.Y. Rud’, A method for studying the magnetic susceptibility of colloidal solutions in ferrofluidic cells. Instrum. Exp. Tech. 61(1), 116–122 (2018)

    Article  Google Scholar 

  24. V.V. Davydov, V.I. Dudkin, N.S. Myazin, V.Y. Rud’, On the possibility of studying condensed media in the express mode using the nuclear-magnetic-resonance method. Instrum. Exp. Tech. 61(1), 140–147 (2018)

    Article  Google Scholar 

  25. A.I. Zhernovoi, A.A. Komlev, S.V. D’yachenko, Magnetic characteristics of MgFe2O4 nanoparticles obtained by glycine–nitrate synthesis. Tech. Phys. 61(2), 302–305 (2016)

    Article  Google Scholar 

  26. S.E. Logunov, V.V. Davydov, M.G. Vysoczky, M.S. Mazing, New method of researches of the magnetic fields force lines structure. J. Phys.: Conf. Ser. 1038(1), 012093 (2018)

    Google Scholar 

  27. K.J. Smirnov, V.V. Davydov, S.F. Glagolev, N.S. Rodygina, N.V. Ivanova, Photocathodes for near infrared range devices based on InP/InGaAs heterostructures. J. Phys.: Conf. Ser. 1038(1), 012102 (2018)

    Google Scholar 

  28. S.E. Logunov, VYu. Rud, R.V. Davydov, A.V. Moroz, K.J. Smirnov, Optical method for studying the magnetic field structure. J. Phys.: Conf. Ser. 1326(1), 012024 (2019)

    Google Scholar 

  29. S.E. Logunov, V.V. Davydov, M.G. Vysoczky, O.A. Titova, Peculiarities of registration of magnetic field variations by a quantum sensor based on a ferrofluid cell. J. Phys.: Conf. Ser. 1135(1), 012069 (2018)

    Google Scholar 

  30. S.E. Logunov, M.G. Vysoczky, V.V. Davydov, O.A. Titova, On the possibility of using the photometric method for monitoring the position of a mobile marine object, in 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech 2018), vol 8564402 (2018), pp. 282–284

    Google Scholar 

  31. K.J. Smirnov, V.V. Davydov, Y.V. Batov, InP/InGaAs photocathode for hybrid SWIR photodetectors. J. Phys.: Conf. Ser. 1368(2), 022073 (2019)

    Google Scholar 

  32. S.E. Logunov, AYu. Koshkin, V.V. Davydov, Quantum autonomous magnetic field sensor. J. Phys.: Conf. Ser. 1124(1), 041025 (2018)

    Google Scholar 

  33. N.S. Myazin, Yu.I. Neronov, V.I. Dudkin, V.V. Davydov, A.A. Petrov, On the need for express control of the quality of consumer goods within the concept ‘Internet of things”. IOP Conf. Ser.: Mater. Sci. Eng. 497, 012111 (2019)

    Article  Google Scholar 

  34. N. Grebenikova, A. Moroz, M. Bylina, M. Kuzmin, Remote control of the quality and safety of the production of liquid products with using fiber-optic communication lines of the Internet. IOP Conf. Ser.: Mater. Sci. Eng. 497(1), 012109 (2019)

    Article  Google Scholar 

  35. A.A. Moroz, R.V. Davydov, V.V. Davydov, A new scheme for transmitting heterodyne signals based on a fiber-optical transmission system for receiving antenna devices of radar stations and communication systems, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11660 (LNCS, 2019), pp. 710–718

    Google Scholar 

  36. A.V. Moroz, K.Y. Malanin, A.A. Krasnov, VYu. Rud, Features of the construction of the noise compensation circuit of a small-sized active phased antenna array. J. Phys.: Conf. Ser. 1400(4), 044009 (2019)

    Google Scholar 

  37. A.V. Moroz, V.V. Davydov, Fiber-optical system for transmitting heterodyne signals in active phased antenna arrays of radar stations. J. Phys.: Conf. Ser. 1368(2), 022024 (2019)

    Google Scholar 

  38. A.V. Moroz, K.Y. Malanin, A.A. Krasnov, Development of a compensation system based on Horn Antennas for an Active Phased Antenna Array, in Proceedings of the 2019 Antennas Design and Measurement International Conference (ADMInC-2019), vol. 8969090 (Saint-Petersburg, 2019), pp. 114–116

    Google Scholar 

  39. G.A. Pchelkin, V.B. Fadeenko, Features of the transmission of microwave signals at offshore facilities. J. Phys.: Conf. Ser. 1368(2), 022045 (2019)

    Google Scholar 

  40. V.B. Fadeenko, V.A. Kuts, D.A. Vasiliev, V.V. Davydov, New design of fiber-optic communication line for the transmission of microwave signals in the X-band. J. Phys.: Conf. Ser. 1135(1), 012053 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kruglov, V.A., Reznik, V.S., Sychev, K.S., Sinian, V. (2022). Development of a Data Acquisition System for Monitoring Environmental Parameters of Laboratories. In: Velichko, E., Kapralova, V., Karaseov, P., Zavjalov, S., Angueira, P., Andreev, S. (eds) International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-030-81119-8_42

Download citation

Publish with us

Policies and ethics

Navigation