BET Bromodomain Inhibitors as an Emerging Class of Anticancer Agents

A Review of Drug Discovery, Strategy, and Tactics

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Deregulated gene expression including epigenetic modulation is considered one of the most prominent factors that leads to tumorigenesis, thus nominating transcriptional regulators as potential therapeutic targets. Among these epigenetic regulators is a family of evolutionarily conserved motifs known as bromodomains (BRDs), which can be further subcategorized into extraterminal BRDs (BET) or non-BET BRDs. Functionally, BRDs belong to epigenetic readers that bind to acetylated lysine residues on the histone tails and then act as transcriptional coactivators via the recruitment of partner transcriptional factors to the activation sites of target genes. Moreover, BRDs are known for their structural complexity endowed by their varied regulations based on their isoforms, expression pattern, and functionality within diverse tumor types. Provided the prominence of their biological activity and the fact that they get deregulated in different tumor types, growing research efforts are increasingly devoted for develo** small molecules targeting them. Intriguingly, BRD inhibitors were reported to suppress the transcription of oncogenes at doses that are well-tolerated by normal tissue, a property that promoted their progress in clinical testing. In this review, we will highlight the structural diversity among the different classes of BET inhibitors along with their molecular targets. Special focus will be lent to BRD4 along with shedding light on the potential attributes leading to therapeutic selectivity of its inhibitors. This collective review paves the way for better understanding of the SAR of BET inhibitors to expectantly expedite advances in development of new inhibitors possessing optimum affinity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguirre-Portolés C, Feliu J, Reglero G, Ramírez de Molina A (2018) ABCA1 overexpression worsens colorectal cancer prognosis by facilitating tumour growth and caveolin-1-dependent invasiveness, and these effects can be ameliorated using the BET inhibitor apabetalone. Mol Oncol 12(10):1735–1752

    Article  PubMed  PubMed Central  Google Scholar 

  • Alqahtani A, Choucair K, Ashraf M, Hammouda DM, Alloghbi A, Khan T et al (2019) Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA 5(3):FSO372

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews FH, Singh AR, Joshi S, Smith CA, Morales GA, Garlich JR et al (2017) Dual-activity PI3K-BRD4 inhibitor for the orthogonal inhibition of MYC to block tumor growth and metastasis. Proc Natl Acad Sci U S A 114(7):E1072-e80

    Article  Google Scholar 

  • Aylott HE, Atkinson SJ, Bamborough P, Bassil A, Chung C-w, Gordon L et al (2021) Template-hop** approach leads to potent, selective, and highly soluble bromo and extraterminal domain (BET) second bromodomain (BRD2) inhibitors. J Med Chem 64(6):3249–3281

    Article  CAS  PubMed  Google Scholar 

  • Bharatham N, Slavish PJ, Shadrick WR, Young BM, Shelat AA (2018) The role of ZA channel water-mediated interactions in the design of bromodomain-selective BET inhibitors. J Mol Graph Model 81:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boi M, Gaudio E, Bonetti P, Kwee I, Bernasconi E, Tarantelli C et al (2015) The BET Bromodomain inhibitor OTX015 affects Pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs. Clin Cancer Res 21(7):1628–1638

    Article  CAS  PubMed  Google Scholar 

  • Brand M, Measures AR, Wilson BG, Cortopassi WA, Alexander R, Höss M et al (2015) Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem Biol 10(1):22–39

    Article  CAS  PubMed  Google Scholar 

  • Brasier AR, Zhou J (2020) Validation of the epigenetic reader bromodomain-containing protein 4 (BRD4) as a therapeutic target for treatment of airway remodeling. Drug Discov Today 25(1):126–132

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Lu T, Yan Z, Lu W, Zhou F, Lyu X et al (2019) Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins. Eur J Med Chem 182:111633

    Article  CAS  PubMed  Google Scholar 

  • Chiang CM (2009) Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4. F1000 Biol Rep 1:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark PG, Vieira LC, Tallant C, Fedorov O, Singleton DC, Rogers CM et al (2015) LP99: discovery and synthesis of the first selective BRD7/9 Bromodomain inhibitor. Angew Chem Weinheim Bergstr Ger 127(21):6315–6319

    Article  PubMed  PubMed Central  Google Scholar 

  • Conery AR, Centore RC, Neiss A, Keller PJ, Joshi S, Spillane KL et al (2016) Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife 5:e10483

    Article  PubMed  PubMed Central  Google Scholar 

  • Coudé MM, Braun T, Berrou J, Dupont M, Bertrand S, Masse A et al (2015) BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget 6(19):17698–17712

    Article  PubMed  PubMed Central  Google Scholar 

  • Dang CV, Reddy EP, Shokat KM, Soucek L (2017) Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer 17(8):502–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370):529–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denny RA, Flick AC, Coe J, Langille J, Basak A, Liu S et al (2017) Structure-based Design of Highly Selective Inhibitors of the CREB binding protein Bromodomain. J Med Chem 60(13):5349–5363

    Article  CAS  PubMed  Google Scholar 

  • Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG et al (2012) BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci U S A 109(18):6927–6932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K (2003) The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A 100(15):8758–8763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz T, Rodríguez V, Lozano E, Mena MP, Calderón M, Rosiñol L et al (2017) The BET bromodomain inhibitor CPI203 improves lenalidomide and dexamethasone activity in in vitro and in vivo models of multiple myeloma by blockade of Ikaros and MYC signaling. Haematologica 102(10):1776–1784

    Article  PubMed  PubMed Central  Google Scholar 

  • Drouin L, McGrath S, Vidler LR, Chaikuad A, Monteiro O, Tallant C et al (2015) Structure enabled design of BAZ2-ICR, a chemical probe targeting the bromodomains of BAZ2A and BAZ2B. J Med Chem 58(5):2553–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D et al (2020) Selective inhibition of the BRD2 bromodomain of BET proteins in prostate cancer. Nature 578(7794):306–310

    Article  CAS  PubMed  Google Scholar 

  • Ferri E, Petosa C, McKenna CE (2016) Bromodomains: structure, function and pharmacology of inhibition. Biochem Pharmacol 106:1–18

    Article  CAS  PubMed  Google Scholar 

  • Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fish PV, Filippakopoulos P, Bish G, Brennan PE, Bunnage ME, Cook AS et al (2012) Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem 55(22):9831–9837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gacias M, Gerona-Navarro G, Plotnikov AN, Zhang G, Zeng L, Kaur J et al (2014) Selective chemical modulation of gene transcription favors oligodendrocyte lineage progression. Chem Biol 21(7):841–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdeano C, Ciulli A (2016) Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Future Med Chem 8(13):1655–1680

    Article  CAS  PubMed  Google Scholar 

  • Galvani A, Thiriet C (2015) Nucleosome dancing at the tempo of histone tail acetylation. Genes (Basel) 6(3):607–621

    Article  CAS  PubMed  Google Scholar 

  • Garcia PL, Miller AL, Kreitzburg KM, Council LN, Gamblin TL, Christein JD et al (2016) The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models. Oncogene 35(7):833–845

    Article  CAS  PubMed  Google Scholar 

  • Garnier JM, Sharp PP, Burns CJ (2014) BET bromodomain inhibitors: a patent review. Expert Opin Ther Pat 24(2):185–199

    Article  CAS  PubMed  Google Scholar 

  • Gechijian LN, Buckley DL, Lawlor MA, Reyes JM, Paulk J, Ott CJ et al (2018) Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol 14(4):405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilan O, Rioja I, Knezevic K, Bell MJ, Yeung MM, Harker NR et al (2020) Selective targeting of BRD1 and BRD2 of the BET proteins in cancer and immunoinflammation. Science 368(6489):387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan PE, Hay DA et al (2015) CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci U S A 112(34):10768–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Jiao H, An Q, Zhang X, Zengyangzong D, Xu J et al (2022) Discovery of novel 4-phenylquinazoline-based BRD4 inhibitors for cardiac fibrosis. Acta Pharm Sin B 12(1):291–307

    Article  CAS  PubMed  Google Scholar 

  • Hewings DS, Rooney TP, Jennings LE, Hay DA, Schofield CJ, Brennan PE et al (2012) Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions. J Med Chem 55(22):9393–9413

    Article  CAS  PubMed  Google Scholar 

  • Hewings DS, Fedorov O, Filippakopoulos P, Martin S, Picaud S, Tumber A et al (2013) Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands. J Med Chem 56(8):3217–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann AF, Martin LJ, Minder JL, Roe JS, Shi J, Steurer S et al (2016) Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol 12(9):672–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Zhou J, Jiang J, Yuan J, Zhang Y, Wei X et al (2019) Genomic characterization of genes encoding histone acetylation modulator proteins identifies therapeutic targets for cancer treatment. Nat Commun 10(1):733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hupe MC, Hoda MR, Zengerling F, Perner S, Merseburger AS, Cronauer MV (2019) The BET-inhibitor PFI-1 diminishes AR/AR-V7 signaling in prostate cancer cells. World J Urol 37(2):343–349

    Article  CAS  PubMed  Google Scholar 

  • Igoe N, Bayle ED, Fedorov O, Tallant C, Savitsky P, Rogers C et al (2017) Design of a Biased Potent Small Molecule Inhibitor of the Bromodomain and PHD finger-containing (BRPF) proteins suitable for cellular and in vivo studies. J Med Chem 60(2):668–680

    Article  CAS  PubMed  Google Scholar 

  • ** W, Tan H, Wu J, He G, Liu B (2022) Dual-target inhibitors of bromodomain-containing protein 4 (BRD4) in cancer therapy: current situation and future directions. Drug Discov Today 27(1):246–256

    Article  CAS  PubMed  Google Scholar 

  • Jones KL, Beaumont DM, Bernard SG, Bit RA, Campbell SP, Chung CW et al (2021) Discovery of a novel Bromodomain and extra terminal domain (BET) protein inhibitor, I-BET282E, suitable for clinical progression. J Med Chem 64(16):12200–12227

    Article  CAS  PubMed  Google Scholar 

  • Jostes S, Nettersheim D, Fellermeyer M, Schneider S, Hafezi F, Honecker F et al (2017) The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J Cell Mol Med 21(7):1300–1314

    Article  CAS  PubMed  Google Scholar 

  • King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P et al (2013) The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153(7):1552–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krämer KF, Moreno N, Frühwald MC, Kerl K (2017) BRD9 inhibition, alone or in combination with cytostatic compounds as a therapeutic approach in RhaBRDoid Tumors. Int J Mol Sci 18(7):1537

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamonica JM, Deng W, Kadauke S, Campbell AE, Gamsjaeger R, Wang H et al (2011) Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc Natl Acad Sci U S A 108(22):E159–E168

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewin J, Soria JC, Stathis A, Delord JP, Peters S, Awada A et al (2018) Phase Ib trial with Birabresib, a small-molecule inhibitor of Bromodomain and Extraterminal proteins, in patients with selected advanced solid Tumors. J Clin Oncol 36(30):3007–3014

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Yang Q, Xu T, Shi L (2020) Evaluation of chidamide and PFI-1 as a combination therapy for triple-negative breast cancer. Trop J Pharm Res 19(2):259–264

    Article  CAS  Google Scholar 

  • Lines KE, Filippakopoulos P, Stevenson M, Bountra C, Thakker RV (eds) (2019) JQ1 treatment significantly reduces POMC expression and ACTH secretion from the corticotrophinoma cell line, AtT20. Endocrine Abstracts. https://doi.org/10.1530/endoabs.65.OP6.3. Bioscientifica

  • Liu Z, Wang P, Chen H, Wold EA, Tian B, Brasier AR et al (2017) Drug discovery targeting Bromodomain-containing protein 4. J Med Chem 60(11):4533–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Tian B, Chen H, Wang P, Brasier AR, Zhou J (2018) Discovery of potent and selective BRD4 inhibitors capable of blocking TLR3-induced acute airway inflammation. Eur J Med Chem 151:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin LJ, Koegl M, Bader G, Cockcroft XL, Fedorov O, Fiegen D et al (2016) Structure-based design of an in vivo active selective BRD9 inhibitor. J Med Chem 59(10):4462–4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeown MR, Shaw DL, Fu H, Liu S, Xu X, Marineau JJ et al (2014) Biased multicomponent reactions to develop novel bromodomain inhibitors. J Med Chem 57(21):9019–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirguet O, Lamotte Y, Donche F, Toum J, Gellibert F, Bouillot A et al (2012) From ApoA1 upregulation to BET family bromodomain inhibition: discovery of I-BET151. Bioorg Med Chem Lett 22(8):2963–2967

    Article  CAS  PubMed  Google Scholar 

  • Mirguet O, Gosmini R, Toum J, Clément CA, Barnathan M, Brusq JM et al (2013) Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J Med Chem 56(19):7501–7515

    Article  CAS  PubMed  Google Scholar 

  • Moros A, Rodríguez V, Saborit-Villarroya I, Montraveta A, Balsas P, Sandy P et al (2014) Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia 28(10):2049–2059

    Article  CAS  PubMed  Google Scholar 

  • Moustakim M, Clark PGK, Hay DA, Dixon DJ, Brennan PE (2016) Chemical probes and inhibitors of bromodomains outside the BET family. Medchemcomm 7(12):2246–2264

    Article  CAS  PubMed  Google Scholar 

  • Müller S, Knapp S (2014) Discovery of BET bromodomain inhibitors and their role in target validation. MedChemCommun 5(3):288–296

    Article  Google Scholar 

  • Niu Q, Liu Z, Alamer E, Fan X, Chen H, Endsley J et al (2019) Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV. J Clin Invest 129(8):3361–3373

    Article  PubMed  PubMed Central  Google Scholar 

  • Noel JK, Iwata K, Ooike S, Sugahara K, Nakamura H, Daibata M (2013) Abstract C244: development of the BET bromodomain inhibitor OTX015. Mol Cancer Ther 12(11_Supplement):C244-C

    Article  Google Scholar 

  • O’Dwyer PJ, Piha-Paul SA, French C, Harward S, Ferron-Brady G, Wu Y et al (2016) Abstract CT014: GSK525762, a selective bromodomain (BRD) and extra terminal protein (BET) inhibitor: results from part 1 of a phase I/II open-label single-agent study in patients with NUT midline carcinoma (NMC) and other cancers. Cancer Res 76(14_Supplement):CT014-CT

    Article  Google Scholar 

  • Odore E, Lokiec F, Cvitkovic E, Bekradda M, Herait P, Bourdel F et al (2016) Phase I population pharmacokinetic assessment of the Oral Bromodomain inhibitor OTX015 in patients with Haematologic malignancies. Clin Pharmacokinet 55(3):397–405

    Article  CAS  PubMed  Google Scholar 

  • Ozer HG, El-Gamal D, Powell B, Hing ZA, Blachly JS, Harrington B et al (2018) BRD4 profiling identifies critical chronic lymphocytic Leukemia oncogenic circuits and reveals sensitivity to PLX51107, a novel structurally distinct BET InhibitorBRD4 regulates core transcriptional programs in CLL. Cancer Discov 8(4):458–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer WS, Poncet-Montange G, Liu G, Petrocchi A, Reyna N, Subramanian G et al (2016) Structure-guided design of IACS-9571, a selective high-affinity dual TRIM24-BRPF1 Bromodomain inhibitor. J Med Chem 59(4):1440–1454

    Article  CAS  PubMed  Google Scholar 

  • Pastori C, Daniel M, Penas C, Volmar CH, Johnstone AL, Brothers SP et al (2014) BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics 9(4):611–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Salvia M, Esteller M (2017) Bromodomain inhibitors and cancer therapy: from structures to applications. Epigenetics 12(5):323–339

    Article  PubMed  Google Scholar 

  • Picaud S, Da Costa D, Thanasopoulou A, Filippakopoulos P, Fish PV, Philpott M et al (2013a) PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains. Cancer Res 73(11):3336–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picaud S, Wells C, Felletar I, Brotherton D, Martin S, Savitsky P et al (2013b) RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci U S A 110(49):19754–19759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remillard D, Buckley DL, Paulk J, Brien GL, Sonnett M, Seo HS et al (2017) Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew Chem Int Ed Engl 56(21):5738–5743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez Y, Gerona-Navarro G, Osman R, Zhou MM (2020) In silico design and molecular basis for the selectivity of Olinone toward the first over the second bromodomain of BRD4. Proteins Struct Funct Bioinf 88(3):414–430

    Article  Google Scholar 

  • Romero FA, Taylor AM, Crawford TD, Tsui V, Côté A, Magnuson S (2016) Disrupting acetyl-lysine recognition: progress in the development of Bromodomain inhibitors. J Med Chem 59(4):1271–1298

    Article  CAS  PubMed  Google Scholar 

  • Sanchez R, Zhou MM (2009) The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel 12(5):659–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez R, Meslamani J, Zhou MM (2014) The bromodomain: from epigenome reader to druggable target. Biochim Biophys Acta 1839(8):676–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarnik J, Poplawski T, Tokarz P (2021) BET proteins as attractive targets for cancer therapeutics. Int J Mol Sci 22(20):11102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seal J, Lamotte Y, Donche F, Bouillot A, Mirguet O, Gellibert F et al (2012) Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg Med Chem Lett 22(8):2968–2972

    Article  CAS  PubMed  Google Scholar 

  • Seal JT, Atkinson SJ, Aylott H, Bamborough P, Chung C-w, Copley RC et al (2020) The optimization of a novel, weak bromo and extra terminal domain (BET) bromodomain fragment ligand to a potent and selective second bromodomain (BRD2) inhibitor. J Med Chem 63(17):9093–9126

    Article  CAS  PubMed  Google Scholar 

  • Shao M, He L, Zheng L, Huang L, Zhou Y, Wang T et al (2017) Structure-based design, synthesis and in vitro antiproliferative effects studies of novel dual BRD4/HDAC inhibitors. Bioorg Med Chem Lett 27(17):4051–4055

    Article  CAS  PubMed  Google Scholar 

  • Slavish PJ, Chi L, Yun M-K, Tsurkan L, Martinez NE, Jonchere B et al (2020) Bromodomain-selective BET inhibitors are potent antitumor agents against MYC-driven Pediatric CancerBromodomain-selective BET inhibitors. Cancer Res 80(17):3507–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SG, Sanchez R, Zhou MM (2014) Privileged diazepine compounds and their emergence as bromodomain inhibitors. Chem Biol 21(5):573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speck-Planche A, Scotti MT (2019) BET bromodomain inhibitors: fragment-based in silico design using multi-target QSAR models. Mol Divers 23(3):555–572

    Article  CAS  PubMed  Google Scholar 

  • St Pierre R, Kadoch C (2017) Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. Curr Opin Genet Dev 42:56–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Roberts JM, Seo HS, Souza A, Paulk J, Scott TG et al (2016) Design and characterization of bivalent BET inhibitors. Nat Chem Biol 12(12):1089–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang P, Zhang J, Liu J, Chiang CM, Ouyang L (2021) Targeting Bromodomain and Extraterminal proteins for drug discovery: from current Progress to technological development. J Med Chem 64(5):2419–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao S, Tao S, Guo F, Zhang L, Zhao L, Fu P et al (2022) Discovery of indol-6-yl-pyrrolo [2, 3-c] pyridin-7-one derivatives as bromodomain-containing protein 4 (BRD4) inhibitors for the treatment of kidney fibrosis. Eur J Med Chem 231:114153

    Article  CAS  PubMed  Google Scholar 

  • Theodoulou NH, Tomkinson NC, Prinjha RK, Humphreys PG (2016a) Clinical progress and pharmacology of small molecule bromodomain inhibitors. Curr Opin Chem Biol 33:58–66

    Article  CAS  PubMed  Google Scholar 

  • Theodoulou NH, Tomkinson NC, Prinjha RK, Humphreys PG (2016b) Progress in the development of non-BET Bromodomain chemical probes. ChemMedChem 11(5):477–487

    Article  CAS  PubMed  Google Scholar 

  • Theodoulou NH, Bamborough P, Bannister AJ, Becher I, Bit RA, Che KH et al (2016c) Discovery of I-BRD9, a selective cell active chemical probe for Bromodomain containing protein 9 inhibition. J Med Chem 59(4):1425–1439

    Article  CAS  PubMed  Google Scholar 

  • Todaro M, Boi M, Vurchio V, Ercole E, Machiorlatti R, Messana K et al (2014) OTX015, a novel BET inhibitor, is a promising anticancer agent for multiple myeloma. Cancer Res 74(19_Supplement):5531

    Article  Google Scholar 

  • Tough DF, Prinjha RK, Tak PP (2015) Epigenetic mechanisms and drug discovery in rheumatology. Clin Med (Lond) 15(Suppl 6):s64–s71

    Article  PubMed  Google Scholar 

  • Wang J, Wang Y, Mei H, Yin Z, Geng Y, Zhang T et al (2017a) The BET bromodomain inhibitor JQ1 radiosensitizes non-small cell lung cancer cells by upregulating p21. Cancer Lett 391:141–151

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Li Y, Xu J, Wang Y, Leung EL, Liu L et al (2017b) Selective inhibition mechanism of RVX-208 to the second bromodomain of bromo and extraterminal proteins: insight from microsecond molecular dynamics simulations. Sci Rep 7(1):8857

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu S, Wang L, Yang Z, Zhao J, Zhang L (2020) Binding selectivity of inhibitors toward the first over the second bromodomain of BRD4: theoretical insights from free energy calculations and multiple short molecular dynamics simulations. RSC Adv 11(2):745–759

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen N, Guo B, Zheng H, Xu L, Liang H, Wang Q et al (2019) Bromodomain inhibitor jq1 induces cell cycle arrest and apoptosis of glioma stem cells through the VEGF/PI3K/AKT signaling pathway. Int J Oncol 55(4):879–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woods AD, Berlow NE, Ortiz MV, Dela Cruz F, Siddiquee A, Coutinho DF et al (2022) Bromodomain 4 inhibition leads to MYCN downregulation in Wilms tumor. Pediatr Blood Cancer 69(2):e29401

    Article  CAS  PubMed  Google Scholar 

  • Wright TD, Raybuck C, Bhatt A, Monlish D, Chakrabarty S, Wendekier K et al (2020) Pharmacological inhibition of the MEK5/ERK5 and PI3K/Akt signaling pathways synergistically reduces viability in triple-negative breast cancer. J Cell Biochem 121(2):1156–1168

    Article  CAS  PubMed  Google Scholar 

  • Wu SY, Chiang CM (2007) The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 282(18):13141–13145

    Article  CAS  PubMed  Google Scholar 

  • WyspiaÅ„ska BS, Bannister AJ, Barbieri I, Nangalia J, Godfrey A, Calero-Nieto FJ et al (2014) BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms. Leukemia 28(1):88–97

    Article  PubMed  Google Scholar 

  • Xu Y, Vakoc CR. Targeting cancer cells with BET Bromodomain inhibitors. Cold Spring Harb Perspect Med. 2017;7(7): a026674

    Google Scholar 

  • Yang L, Zhang Y, Shan W, Hu Z, Yuan J, Pi J et al (2017) Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci Transl Med 9(400):eaal1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao D, Liu J, Ouyang L (2017) What structural modifications can be used for BRD4 inhibitors for their use in leukemia therapy? Future Med Chem 9(9):839–842

    Article  CAS  PubMed  Google Scholar 

  • Yin M, Wang N, Yan Q (2017) A novel BET family bromodomain inhibitor NHWD-870 represents a promising therapeutic agent for a broad spectrum of cancers. FASEB J 31:979.3-.3. https://doi.org/10.1158/1538-7445.AM2017-1382

    Article  Google Scholar 

  • Yin M, Guo Y, Hu R, Cai WL, Li Y, Pei S et al (2020) Potent BRD4 inhibitor suppresses cancer cell-macrophage interaction. Nat Commun 11(1):1–14

    Article  Google Scholar 

  • Zaware N, Zhou MM (2017) Chemical modulators for epigenome reader domains as emerging epigenetic therapies for cancer and inflammation. Curr Opin Chem Biol 39:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Y, Kost-Alimova M, Shi X, Leo E, Bardenhagen JP, Shepard HE et al (2015) Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery. Epigenetics Chromatin 8:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu R, Zhong Y, Plotnikov AN, Zhang W, Zeng L et al (2012) Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J Biol Chem 287(34):28840–28851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Plotnikov AN, Rusinova E, Shen T, Morohashi K, Joshua J et al (2013) Structure-guided design of potent diazobenzene inhibitors for the BET bromodomains. J Med Chem 56(22):9251–9264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HT, Gui T, Sang Y, Yang J, Li YH, Liang GH et al (2017) The BET Bromodomain inhibitor JQ1 suppresses chondrosarcoma cell growth via regulation of YAP/p21/c-Myc Signaling. J Cell Biochem 118(8):2182–2192

    Article  CAS  PubMed  Google Scholar 

  • Zhu YX, Shi CX, Bruins LA, Wang X, Riggs DL, Porter B et al (2019) Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4. Blood Cancer J 9(2):19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Authors Contribution Statement

All authors have participated to the conception and design of the work; have drafted the work and revised it. All authors have approved the submitted version and have agreed to be personally accountable for their contribution.

Competing Interests Statement

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reem K. Arafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yasser, R., Arafa, K.K., Sedky, N.K., Sidaros, K.R., Arafa, R.K. (2024). BET Bromodomain Inhibitors as an Emerging Class of Anticancer Agents. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_401-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_401-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation