Photoimmunotherapy for Cancer Treatment

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology
  • 35 Accesses

Abstract

Cancer, as one of the diseases with high mortality rates in the world, has received enormous attention from people. Conventional therapeutic approaches cannot satisfy the need for unacceptable side effects, tumor recurrence, and poor prognosis. Photoimmunotherapy (PIT) mediated by antibody-photosensitizer conjugates, as a new targeting therapy method, could minimize the side effects. Even no side effects were observed when the photosensitizer was near-infrared, water-soluble, silicon phthalocyanine derivative, IRdye700DX, termed as near-infrared photoimmunotherapy (NIR-PIT). The mechanism was concluded that under the NIR irradiation, the rupture of the cell membrane induced the rapid and highly selective immunogenic cell death (ICD), which initiated a host anticancer immune response. PIT could virtually target any specific antigens for tumors and realized effective tumor depression in various tumor models in vivo. Many attempts were made to improve the therapeutic efficacy and reduce tumor recurrence, such as the combination therapy with chemotherapy or immunogenic protein. In 2017, the first 1/2 clinical trial in human phase was successfully conducted utilizing cetuximab (Cet)-IR700 as the agent of NIR-PIT, and the target audience was patients with recurrent head and neck cancer who were unable to undergo surgical treatment. Hence, PIT, as a potential candidate, is expected to serve as a new targeting approach for clinical cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aung W, Tsuji AB, Sugyo A et al (2018) Near-infrared photoimmunotherapy of pancreatic cancer using an indocyanine green-labeled anti-tissue factor antibody. World J Gastroentero 24:5491–5504

    Article  CAS  Google Scholar 

  • Burley TA, Maczynska J, Shah A et al (2018) Near-infrared photoimmunotherapy targeting EGFR-shedding new light on glioblastoma treatment. Int J Cancer 142:2363–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwish WM, Bayoumi NA, El-Shershaby HM et al (2020) Targeted photoimmunotherapy based on photosensitizer-antibody conjugates for multiple myeloma treatment. J Photochem Photobiol B 203:111777

    Article  CAS  PubMed  Google Scholar 

  • Emami F, Pathak S, Nguyen TT et al (2021) Photoimmunotherapy with cetuximab-conjugated gold nanorods reduces drug resistance in triple negative breast cancer spheroids with enhanced infiltration of tumor-associated macrophages. J Control Release 329:645–664

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto S, Muguruma N, Okamoto K et al (2018) A novel theranostic combination of near-infrared fluorescence imaging and laser irradiation targeting c-KIT for gastrointestinal stromal tumors. Theranostics 8:2313–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goff BA, Hermanto U, Rumbaugh J et al (1994) Photoimmunotherapy and biodistribution with an OC125-chiorin immunoconjugate in an in vivo murine ovarian cancer model. Br J Cancer 70:474–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanaoka H, Nakajima T, Sato K et al (2015a) Photoimmunotherapy of hepatocellular carcinoma-targeting Glypican-3 combined with nanosized albumin-bound paclitaxel. Nanomedicine 10:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka H, Nagaya T, Sato K et al (2015b) Glypican-3 targeted human heavy chain antibody as a drug carrier for hepatocellular carcinoma therapy. Mol Pharm 12:2151–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiroshima Y, Maawy A, Zhang Y et al (2015) Photoimmunotherapy inhibits tumor recurrence after surgical resection on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) nude mouse model. Ann Surg Oncol 22:1469–1474

    Article  Google Scholar 

  • Hollandsworth HM, Amirfakhri S, Filemoni F et al (2020) Near-infrared photoimmunotherapy is effective treatment for colorectal cancer in orthotopic nude-mouse models. PLoS One 15:234643

    Article  Google Scholar 

  • Huang H-C, Pigula M, Fang Y, Hasan T (2018) Immobilization of photo-Immunoconjugates on nanoparticles leads to enhanced light-activated biological effects. Small 14:1800236

    Article  Google Scholar 

  • Isobe Y, Sato K, Nishinaga Y et al (2020) Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer. EBioMedicine 52:102632

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito K, Mitsunaga M, Arihiro S et al (2016) Molecular targeted photoimmunotherapy for HER2-positive human gastric cancer in combination with chemotherapy results in improved treatment outcomes through different cytotoxic mechanisms. BMC Cancer 16:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito K, Mitsunaga M, Nishimura T et al (2017) Near-infrared Photochemoimmunotherapy by photoactivatable bifunctional antibody-drug conjugates targeting human epidermal growth factor receptor 2 positive cancer. Bioconjug Chem 28:1458–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** J, Krishnamachary B, Mironchik Y et al (2016) Phototheranostics of CD44-positive cell populations in triple negative breast cancer. Sci Rep 6:27871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **g H, Weidensteiner C, Reichardt W et al (2016) Imaging and selective elimination of glioblastoma stem cells with theranostic near-infrared-labeled CD133-specific antibodies. Theranostics 6:862–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamkaew A, Lim SH, Lee HB et al (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42:77

    Article  CAS  PubMed  Google Scholar 

  • Kiss B, van den Berg NS, Ertsey R et al (2019) CD47-targeted near-infrared photoimmunotherapy for human bladder cancer. Clin Cancer Res 25:3561–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Choyke PL (2016) Super enhanced permeability and retention (SUPR) effects in tumors following near infrared photoimmunotherapy. Nanoscale 8:12504–12509

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Choyke PL (2019) Near-infrared photoimmunotherapy of cancer. Acc Chem Res 52:2332–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan G, Ni K, Lin W (2019) Nanoscale metal-organic frameworks for phototherapy of cancer. Coord Chem Rev 379:65–81

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yang Z, Chen X (2020) Recent advances in stimuli-responsive platforms for cancer immunotherapy. Acc Chem Res 53:2044–2054

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Meng X, Bu W (2019) Upconversion-based photodynamic cancer therapy. Coord Chem Rev 379:82–98

    Article  CAS  Google Scholar 

  • Lum Y-L, Luk JM, Staunton DE et al (2020) Cadherin-17 targeted near-infrared photoimmunotherapy for treatment of gastrointestinal cancer. Mol Pharm 17:3941–3951

    Article  CAS  PubMed  Google Scholar 

  • Maawy AA, Hiroshima Y, Zhang Y et al (2015) Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer. PLoS One 10:121989

    Article  Google Scholar 

  • MÄ…czyÅ„ska J, Da Pieve C, Burley TA et al (2020) Immunomodulatory activity of IR700-labelled affibody targeting HER2. Cell Death Dis 11:886

    Article  PubMed  PubMed Central  Google Scholar 

  • Maruoka Y, Furusawa A, Okada R et al (2020a) Near-infrared photoimmunotherapy combined with CTLA4 checkpoint blockade in syngeneic mouse cancer models. Vaccine 8:0528

    Article  CAS  Google Scholar 

  • Maruoka Y, Furusawa A, Okada R et al (2020b) Combined CD44- and CD25-targeted near-infrared photoimmunotherapy selectively kills cancer and regulatory T cells in syngeneic mouse cancer models. Cancer Immunol Res 8:345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mew D, Wat CK, Towers GH et al (1983) Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol 130:1473

    Article  CAS  PubMed  Google Scholar 

  • Mitsunaga M, Ogawa M, Kosaka N et al (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17:1685–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molpus KL, Hamblin MR, Rizvi I et al (2000) Intraperitoneal photoimmunotherapy of ovarian carcinoma xenografts in nude mice using charged photoimmunoconjugates. Gynecol Oncol 76:397–404

    Article  CAS  PubMed  Google Scholar 

  • Moore LS, de Boer E, Warram JM et al (2016) Photoimmunotherapy of residual disease after incomplete surgical resection in head and neck cancer models. Cancer Med 5:1526–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaya T, Nakamura Y, Okuyama S et al (2017a) Syngeneic mouse models of oral cancer are effectively targeted by anti-CD44-based NIR-PIT. Mol Cancer Res 15:1667–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaya T, Nakamura Y, Sato K et al (2017b) Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget 8:8807–8817

    Article  PubMed  Google Scholar 

  • Nagaya T, Nakamura Y, Okuyama S et al (2017c) Near-infrared Photoimmunotherapy targeting prostate cancer with prostate-specific membrane antigen (PSMA) antibody. Mol Cancer Res 15:1153–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaya T, Friedman J, Maruoka Y et al (2019) Host immunity following near-infrared photoimmunotherapy is enhanced with PD-1 checkpoint blockade to eradicate established antigenic tumors. Cancer Immunol Res 7:401–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Ohler ZW, Househoider D et al (2016) Near infrared photoimmunotherapy in a transgenic mouse model of spontaneous epidermal growth factor receptor (EGFR)-expressing lung cancer. Mol Cancer Ther 16:408

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura T, Mitsunaga M, Sawada R et al (2019) Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody. Cancer 8:7781–7792

    CAS  Google Scholar 

  • Nishimura T, Mitsunaga M, Ito K et al (2020) Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT. Gastric Cancer 23:82–94

    Article  CAS  PubMed  Google Scholar 

  • Nishinaga Y, Sato K, Yasui H et al (2020) Targeted phototherapy for malignant pleural mesothelioma: near-infrared photoimmunotherapy targeting podoplanin. Cell 9:1019

    Article  CAS  Google Scholar 

  • Ogata F, Nagaya T, Okuyama S et al (2017) Dynamic changes in the cell membrane on three dimensional low coherent quantitative phase microscopy (3D LC-QPM) after treatment with the near infrared photoimmunotherapy. Oncotarget 8:104295–104302

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa M, Tomita Y, Nakamura Y et al (2017) Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget 8:10425–10436

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada R, Maruoka Y, Furusawa A et al (2019) The effect of antibody fragments on CD25 targeted regulatory T cell near-infrared photoimmunotherapy. Bioconjug Chem 30:2624–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada R, Kato T, Furusawa A et al (2021) Local depletion of immune checkpoint ligand CTLA4 expressing cells in tumor beds enhances antitumor host immunity. Adv Therap 4:2000269

    Article  CAS  Google Scholar 

  • Pogrebniak HW, Matthews W, Black C et al (1993) Targeted phototherapy with sensitizer-monoclonal antibody conjugate and light. Surg Oncol 2:31–42

    Article  CAS  PubMed  Google Scholar 

  • Railkar R, Krane LS, Li QQ et al (2017) Epidermal growth factor receptor (EGFR)-targeted photoimmunotherapy (PIT) for the treatment of EGFR-expressing bladder cancer. Mol Cancer Ther 16:2201–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichert JM, Rosensweig CJ, Faden LB et al (2005) Nat Biotechnol 23:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Rizvi I, Dinh TA, Yu W et al (2012) Photoimmunotherapy and irradiance modulation reduce chemotherapy cycles and toxicity in a murine model for ovarian carcinomatosis: perspective and results. Isr J Chem 52:776–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadraeian M, Bahou C, Da Cruz EF et al (2020) Photoimmunotherapy using cationic and anionic photosensitizer-antibody conjugates against HIV Env-expressing cells. Int J Mol Sci 21:9151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano K, Nakajima T, Choyke PL et al (2013) Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 7:717–724

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Watanabe R, Hanaoka H et al (2014a) Photoimmunotherapy: comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Mol Oncol 8:620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Choyke PL, Kobayashi H (2014b) Photoimmunotherapy of gastric cancer peritoneal carcinomatosis in a mouse model. PLoS One 9:113276

    Article  Google Scholar 

  • Sato K, Hanaoka H, Watanabe R et al (2015a) Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer. Mol Cancer Ther 14:141–150

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nagaya T, Mitsunaga M et al (2015b) Near infrared photoimmunotherapy for lung metastases. Cancer Lett 365:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Nagaya T, Choyke PL et al (2015c) Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC: preclinical experience. Theranostics 5:698–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Sato N, Xu B et al (2016) Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci Transl Med 8:110–352

    Article  Google Scholar 

  • Sato K, Ando K, Okuyama S et al (2018) Photoinduced ligand release from a silicon phthalocyanine dye conjugated with monoclonal antibodies: a mechanism of cancer cell cytotoxicity after near-infrared photoimmunotherapy. Acs Central Sci 4:1559–1569

    Article  CAS  Google Scholar 

  • Savellano MD, Hasan T (2005) Photochemical targeting of epidermal growth factor receptor: a mechanistic study. Clin Cancer Res 11:1658–1668

    Article  CAS  PubMed  Google Scholar 

  • Savellano MD, Pogue BW, Hoopes PJ et al (2005) Multiepitope HER2 targeting enhances photoimmunotherapy of HER2-overexpressing cancer cells with pyropheophorbide-a immunoconjugates. Cancer Res 65:6371–6379

    Article  CAS  PubMed  Google Scholar 

  • Shimoyama K, Kagawa S, Ishida M et al (2015) Viral transduction of the HER2-extracellular domain expands trastuzumab-based photoimmunotherapy for HER2-negative breast cancer cells. Breast Cancer Res Treat 149:597–605

    Article  CAS  PubMed  Google Scholar 

  • Shirasu N, Yamada H, Shibaguchi H et al (2014) Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. Int J Cancer 135:2697–2710

    Article  CAS  PubMed  Google Scholar 

  • Spring BQ, Abu-Yousif AO, Palanisami A et al (2014) Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci USA 111:933–942

    Article  Google Scholar 

  • Tian J, Huang B, Nawaz MH et al (2020) Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord Chem Rev 420:213410

    Article  CAS  Google Scholar 

  • Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9:269–277

    Article  CAS  PubMed  Google Scholar 

  • Watanabe R, Hanaoka H, Sato K et al (2015) Photoimmunotherapy targeting prostate-specific membrane antigen: are antibody fragments as effective as antibodies? J Nucl Med 56:140–144

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Noma K, Ohara T et al (2019) Photoimmunotherapy for cancer-associated fibroblasts targeting fibroblast activation protein in human esophageal squamous cell carcinoma. Cancer Biol Ther 20:1234–1248

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei W, Jiang D, Ehlerding EB et al (2019) CD146-targeted multimodal image-guided photoimmunotherapy of melanoma. Adv Sci 6:1801237

    Article  Google Scholar 

  • Wei D, Tao Z, Shi Q et al (2020) Selective Photokilling of colorectal tumors by near-infrared photoimmunotherapy with a GPA33-targeted single-chain antibody variable fragment conjugate. Mol Pharm 17:2508–2517

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Pantarat N, Suzuki T et al (2019) Near-infrared photoimmunotherapy using a small protein mimetic for HER2-overexpressing breast cancer. Int J Mol Sci 20:5835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Gao L, Cai Y et al (2016) Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model. Biomaterials 84:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhen Z, Tang W, Wang M et al (2017) Protein nanocage mediated fibroblast-activation protein targeted photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Lett 17:862–869

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yin or Guang-Fu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ma, X., Huang, Y., Li, D., Liu, S.H., Yin, J., Yang, GF. (2023). Photoimmunotherapy for Cancer Treatment. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_308-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_308-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation