Immune Checkpoint Blockade Response Biomarkers

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Cancer immunotherapy based on immune checkpoint blockade (ICB) has demonstrated durable clinical benefit in patients with immunogenic tumors, representing a new alternative in the metastatic scenario. However, innate and acquired resistance is the Achilles heel of this revolutionary therapeutic approach, together with the occurrence of mostly autoimmune adverse effects, particularly in the most effective regimen, the combination immunotherapy. This, together with the high treatment cost, has triggered an important crusade to identify biomarkers that can be used to detect ICB responders before and during treatment that could be used for further clinical stratification and monitoring. Because ICB implementation is relatively recent, the initial works in the field of mechanisms and biomarkers of resistance included very modest cohorts; however, that limitation led to a maximized exploitation of the clinical material, which yielded biomarkers on most OMICS, from genomics to microbiome or radiogenomics. One of the most critical areas of current immunotherapy research is the urgent finding of specific novel predictive biomarkers that could identify individuals who would benefit from ICB. The objective of this chapter is to provide an overview of the current knowledge on checkpoint biology by reviewing the different emerging therapeutically relevant immune checkpoint blockade response biomarkers and their modulation of immune checkpoint signaling at multiple levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ALK:

Anaplastic lymphoma kinase

APC:

Antigen presenting cell

BER:

Base excision repair

bTMB:

Blood-based TMB

CNA:

Copy number aberrations

CR:

Complete response

CRP:

C-reactive protein

CTC:

Circulating tumor cell

ctDNA:

Circulating tumor DNA

CTLA-4:

Cytotoxic T lymphocyte associated protein 4

DAI:

Agretopicity index

DAMP:

Damage-associated molecular pattern

DC:

Dendritic cell

DDR:

DNA damage response

dMMR:

MMR deficiency

DR:

Direct repair

EBV:

Epstein-Barr virus

EFGR:

Epidermal growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

EPCAM:

Epithelial Cell Adhesion Molecule

FDA:

US Food and Drug Administration

HCC:

Hepatocellular carcinoma

HPV:

Human papillomavirus

HRR:

Homologous recombination repair

ICB:

Immune Checkpoint Blockade

ICOS:

Inducible T cell co-stimulator

IFN:

Interferon

IHC:

Immunohistochemistry

IL:

Interleukin

indel:

Insertions and deletions

ITH:

Intra-tumor heterogeneity

KN:

KEYNOTE

LAG-3:

Lymphocyte activation gene 3

LDH:

Lactate dehydrogenase

LOF:

Loss of function

LOH:

Loss of heterogeneity

MHC:

Major histocompatibility complex

MMR:

Mismatch repair

MSI:

Microsatellite instability

NER:

Nucleotide excision repair

NHEJ:

Non-homologous end-joining

NLR:

Neutrophil-to-lymphocyte ratio

NSCLC:

Non-small cell lung cancer

ORF:

Open reading frame

ORR:

Overall response ratio

OS:

Overall survival

PD-1:

Programmed cell death 1

PD-L1:

Programmed cell death ligand 1

PFS:

Progression-free survival

POLE/POLD1:

DNA polymerase gene epsilon/delta 1

PR:

Partial response

PRR:

Pattern-recognition receptor

scRNA-seq:

Single-cell mRNA sequencing

SNV:

Single-nucleotide variation

TAM:

Tumor-associated macrophages

TCGA:

The Cancer Genome Atlas

TIL:

Tumor Infiltrating Lymphocytes

TMB:

Tumor mutation burden

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

tNGS:

Next Generation Sequencing

USD:

United States dollar

WES:

Whole exome sequencing

References

  • Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14(9):623–631

    Article  CAS  PubMed  Google Scholar 

  • Alix-Panabieres C, Pantel K (2016) Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6(5):479–491

    Article  CAS  PubMed  Google Scholar 

  • Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N, Hruban C, Guthrie VB, Rodgers K, Naidoo J, Kang H, Sharfman W, Georgiades C, Verde F, Illei P, Li QK, Gabrielson E, Brock MV, Zahnow CA, Baylin SB, Scharpf RB, Brahmer JR, Karchin R, Pardoll DM, Velculescu VE (2017) Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov 7(3):264–276

    Article  CAS  PubMed  Google Scholar 

  • Ascierto ML, Kmieciak M, Idowu MO, Manjili R, Zhao Y, Grimes M, Dumur C, Wang E, Ramakrishnan V, Wang XY, Bear HD, Marincola FM, Manjili MH (2012) A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res Treat 131(3):871–880

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Li W, Zheng W, Xu D, Chen N, Cui J (2020a) Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacol Res 159:105017

    Article  CAS  PubMed  Google Scholar 

  • Bai R, Lv Z, Xu D, Cui J (2020b) Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 8:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P, Deshmukh RR (2020) Resistance to checkpoint inhibition in cancer immunotherapy. Transl Oncol 13(3):100738

    Article  PubMed  PubMed Central  Google Scholar 

  • Bindea G, Mlecnik B, Angell HK, Galon J (2014) The immune landscape of human tumors: Implications for cancer immunotherapy. Oncoimmunology 3(1):e27456

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumenthal GM, Pazdur R (2017) Approvals in 2016: the march of the checkpoint inhibitors. Nat Rev Clin Oncol 14(3):131–132

    Article  PubMed  Google Scholar 

  • Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365

    Article  CAS  PubMed  Google Scholar 

  • Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 39(1):98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J, Huang F, He Y, Sun J, Tabori U, Kennedy M, Lieber DS, Roels S, White J, Otto GA, Ross JS, Garraway L, Miller VA, Stephens PJ, Frampton GM (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  • Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, Chaput N, Eggermont A, Marabelle A, Soria JC, Ferte C (2017) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23(8):1920–1928

    Article  CAS  PubMed  Google Scholar 

  • Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  Google Scholar 

  • Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

    Article  CAS  PubMed  Google Scholar 

  • Davis AA, Patel VG (2019) The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer 7(1):278

    Article  PubMed  PubMed Central  Google Scholar 

  • Delyon J, Mateus C, Lefeuvre D, Lanoy E, Zitvogel L, Chaput N, Roy S, Eggermont AM, Routier E, Robert C (2013) Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: an early increase in lymphocyte and eosinophil counts is associated with improved survival. Ann Oncol 24(6):1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Devarakonda S, Rotolo F, Tsao MS, Lanc I, Brambilla E, Masood A, Olaussen KA, Fulton R, Sakashita S, McLeer-Florin A, Ding K, Le Teuff G, Shepherd FA, Pignon JP, Graziano SL, Kratzke R, Soria JC, Seymour L, Govindan R, Michiels S (2018) Tumor mutation burden as a biomarker in resected non-small-cell lung cancer. J Clin Oncol 36(30):2995–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz L, Marabelle A, Kim TW, Geva R, Cutsem EV, André T, Ascierto PA, Maio M, Delord J-P, Gottfried M, Guimbaud R, Jaeger D, Elez E, Yoshino T, Joe A, Lam B, Ding J, Pruitt S, Kang SP, Le DT (2017) Efficacy of pembrolizumab in phase 2 KEYNOTE-164 and KEYNOTE-158 studies of microsatellite instability high cancers. Annals Oncol 28:V128–V129

    Article  Google Scholar 

  • Dong N, Moreno-Manuel A, Calabuig-Farinas S, Gallach S, Zhang F, Blasco A, Aparisi F, Meri-Abad M, Guijarro R, Sirera R, Camps C, Jantus-Lewintre E (2021) Characterization of circulating T cell receptor repertoire provides information about clinical outcome after PD-1 blockade in advanced non-small cell lung cancer patients. Cancers (Basel) 13(12):2950

    Article  CAS  PubMed  Google Scholar 

  • Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, Blanchard T, McMahon D, Sidney J, Sette A, Baker BM, Mandoiu II, Srivastava PK (2014) Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 211(11):2231–2248

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C, Pamer EG, Wolchok JD (2016) Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 7:10391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erbe R, Wang Z, Wu S, **u J, Zaidi N, La J, Tuck D, Fillmore N, Giraldo NA, Topper M, Baylin S, Lippman M, Isaacs C, Basho R, Serebriiskii I, Lenz HJ, Astsaturov I, Marshall J, Taverna J, Lee J, Jaffee EM, Roussos Torres ET, Weeraratna A, Easwaran H, Fertig EJ (2021) Evaluating the impact of age on immune checkpoint therapy biomarkers. Cell Rep 36(8):109599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallarino F, Fields PE, Gajewski TF (1998) B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J Exp Med 188(1):205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fassan M (2018) Molecular diagnostics in pathology: time for a next-generation pathologist? Arch Pathol Lab Med 142(3):313–320

    Article  PubMed  Google Scholar 

  • Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319(5866):1096–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fessler J, Matson V, Gajewski TF (2019) Exploring the emerging role of the microbiome in cancer immunotherapy. J Immunother Cancer 7(1):108

    Article  PubMed  PubMed Central  Google Scholar 

  • Fumet JD, Truntzer C, Yarchoan M, Ghiringhelli F (2020) Tumour mutational burden as a biomarker for immunotherapy: current data and emerging concepts. Eur J Cancer 131:40–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gainor JF, Rizvi H, Aguilar EJ, Mooradian M, Lydon CA, Anderson D, Tenet M, Sauter JL, Mino-Kenudson M, Shaw AT, Awad MM, Hellmann MD (2018) Response and durability of anti-PD-(L)1 therapy in never- or light-smokers with non-small cell lung cancer (NSCLC) and high PD-L1 expression. J Clin Oncol 36(15_suppl):9011–9011

    Article  Google Scholar 

  • Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Galuppini F, Dal Pozzo CA, Deckert J, Loupakis F, Fassan M, Baffa R (2019) Tumor mutation burden: from comprehensive mutational screening to the clinic. Cancer Cell Int 19:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, Rittmeyer A, Fehrenbacher L, Otto G, Malboeuf C, Lieber DS, Lipson D, Silterra J, Amler L, Riehl T, Cummings CA, Hegde PS, Sandler A, Ballinger M, Fabrizio D, Mok T, Shames DS (2018) Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med 24(9):1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, Investigators K (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  • Ghorani E, Rosenthal R, McGranahan N, Reading JL, Lynch M, Peggs KS, Swanton C, Quezada SA (2018) Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma. Ann Oncol 29(1):271–279

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Liu D, Li L (2020) PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 10(3):727–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havel JJ, Chowell D, Chan TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19(3):133–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Xu C (2020) Immune checkpoint signaling and cancer immunotherapy. Cell Res 30(8):660–669

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellmann MD, Paz-Ares L (2018) Lung cancer with a high tumor mutational burden. N Engl J Med 379(11):1093–1094

    Article  PubMed  Google Scholar 

  • Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, Ni A, Novik JB, Mangarin LMB, Abu-Akeel M, Liu C, Sauter JL, Rekhtman N, Chang E, Callahan MK, Chaft JE, Voss MH, Tenet M, Li XM, Covello K, Renninger A, Vitazka P, Geese WJ, Borghaei H, Rudin CM, Antonia SJ, Swanton C, Hammerbacher J, Merghoub T, McGranahan N, Snyder A, Wolchok JD (2018) Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33(5):843–852 e844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, Gopalakrishnan V, ** Y, Zhao H, Amaria RN, Tawbi HA, Cogdill AP, Liu W, LeBleu VS, Kugeratski FG, Patel S, Davies MA, Hwu P, Lee JE, Gershenwald JE, Lucci A, Arora R, Woodman S, Keung EZ, Gaudreau PO, Reuben A, Spencer CN, Burton EM, Haydu LE, Lazar AJ, Zapassodi R, Hudgens CW, Ledesma DA, Ong S, Bailey M, Warren S, Rao D, Krijgsman O, Rozeman EA, Peeper D, Blank CU, Schumacher TN, Butterfield LH, Zelazowska MA, McBride KM, Kalluri R, Allison J, Petitprez F, Fridman WH, Sautes-Fridman C, Hacohen N, Rezvani K, Sharma P, Tetzlaff MT, Wang L, Wargo JA (2020) B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577(7791):549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, **ao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacs JD, Wing MG, Greenwood JD, Hazleman BL, Hale G, Waldmann H (1996) A therapeutic human IgG4 monoclonal antibody that depletes target cells in humans. Clin Exp Immunol 106(3):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Jia K, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, He Y, Zhou C (2021) Alterations of DNA damage response pathway: biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharm Sin B 11(10):2983–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazandjian D, Gong Y, Keegan P, Pazdur R, Blumenthal GM (2019) Prognostic value of the lung immune prognostic index for patients treated for metastatic non-small cell lung cancer. JAMA Oncol 5(10):1481–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kwon HJ, Kim ES, Kwon S, Suh KJ, Kim SH, Kim YJ, Lee JS, Chung JH (2021) Comparison of the predictive power of a combination versus individual biomarker testing in non-small cell lung cancer patients treated with immune checkpoint inhibitors. Cancer Res Treat

    Google Scholar 

  • Kubli SP, Berger T, Araujo DV, Siu LL, Mak TW (2021) Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 20(12):899–919

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, Guminski A, Jakrot V, Scolyer RA, Mann GJ, Kefford RF, Carlino MS, Rizos H (2017) Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol 28(5):1130–1136

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Li X, Huang Q, Zheng X, Liu M (2021) Progress and challenges of predictive biomarkers for immune checkpoint blockade. Front Oncol 11:617335

    Article  PubMed  PubMed Central  Google Scholar 

  • Leslie M (2018) TMB predicts immunotherapy benefit. Cancer Discov 8(6):668

    Google Scholar 

  • Li X, Song W, Shao C, Shi Y, Han W (2019) Emerging predictors of the response to the blockade of immune checkpoints in cancer therapy. Cell Mol Immunol 16(1):28–39

    Article  CAS  PubMed  Google Scholar 

  • Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, Logothetis C, Sharma P (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci U S A 105(39):14987–14992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E (2020) TCR redirected T cells for cancer treatment: achievements, hurdles, and goals. Front Immunol 11:1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manz K, Fenchel K, Eilers A, Morgan J, Wittling K, Dempke WC (2019) Efficacy and safety of approved first-line tyrosine kinase inhibitor (TKI) treatment in patients with metastatic renal cell carcinoma (mRCC): a network meta-analysis based on phase II/III randomised clinical trials (RCTs). J Clin Oncol 37(15_suppl):e16074–e16074

    Article  Google Scholar 

  • McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, Norton C, Bosse D, Wankowicz SM, Cullen D, Horak C, Wind-Rotolo M, Tracy A, Giannakis M, Hodi FS, Drake CG, Ball MW, Allaf ME, Snyder A, Hellmann MD, Ho T, Motzer RJ, Signoretti S, Kaelin WG Jr, Choueiri TK, Van Allen EM (2018) Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359(6377):801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, Bruneval P, Trajanoski Z, Fridman WH, Pages F, Galon J (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29(6):610–618

    Article  PubMed  Google Scholar 

  • Motz GT, Coukos G (2013) Deciphering and reversing tumor immune suppression. Immunity 39(1):61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullard A (2013) New checkpoint inhibitors ride the immunotherapy tsunami. Nat Rev Drug Discov 12(7):489–492

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y (2019) Biomarkers for Immune Checkpoint Inhibitor-Mediated Tumor Response and Adverse Events. Front Med (Lausanne) 6:119

    Article  PubMed  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pio R, Ajona D, Ortiz-Espinosa S, Mantovani A, Lambris JD (2019) Complementing the Cancer-Immunity Cycle. Front Immunol 10:774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Possick JD (2017) Pulmonary toxicities from checkpoint immunotherapy for malignancy. Clin Chest Med 38(2):223–232

    Article  PubMed  Google Scholar 

  • Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33(17):1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Predina J, Eruslanov E, Judy B, Kapoor V, Cheng G, Wang LC, Sun J, Moon EK, Fridlender ZG, Albelda S, Singhal S (2013) Changes in the local tumor microenvironment in recurrent cancers may explain the failure of vaccines after surgery. Proc Natl Acad Sci U S A 110(5):E415–E424

    Article  CAS  PubMed  Google Scholar 

  • Pritchard AL, Burel JG, Neller MA, Hayward NK, Lopez JA, Fatho M, Lennerz V, Wolfel T, Schmidt CW (2015) Exome sequencing to predict neoantigens in melanoma. Cancer Immunol Res 3(9):992–998

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Xu L, Yi M, Yu S, Wu K, Luo S (2019) Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer 18(1):155

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, Hollmann T, Schalper KA, Gainor JF, Shen R, Ni A, Arbour KC, Merghoub T, Wolchok J, Snyder A, Chaft JE, Kris MG, Rudin CM, Socci ND, Berger MF, Taylor BS, Zehir A, Solit DB, Arcila ME, Ladanyi M, Riely GJ, Schultz N, Hellmann MD (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36(7):633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roche (2020) Media & Investor Release: 1–5.

    Google Scholar 

  • Rodriguez-Ruiz ME, Rodriguez I, Mayorga L, Labiano T, Barbes B, Etxeberria I, Ponz-Sarvise M, Azpilikueta A, Bolanos E, Sanmamed MF, Berraondo P, Calvo FA, Barcelos-Hoff MH, Perez-Gracia JL, Melero I (2019) TGFbeta blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol Cancer Ther 18(3):621–631

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Frampton GM, Cui N, Mariathasan S, Abidoye O, Fine GD, Dreicer R (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387(10031):1909–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JS, Goldberg ME, Albacker LA, Gay LM, Agarwala V, Elvin JA, Vergilio J-A, Suh J, Ramkissoon S, Severson E, Daniel S, Ali SM, Schrock AB, Frampton GM, Fabrizio D, Miller VA, Singal G, Abernethy A, Stephens PJ (2017) Immune checkpoint inhibitor (ICPI) efficacy and resistance detected by comprehensive genomic profiling (CGP) in non-small cell lung cancer (NSCLC). Annals of Oncology 28:V404

    Article  Google Scholar 

  • Rossi G, Ignatiadis M (2019) Promises and pitfalls of using liquid biopsy for precision medicine. Cancer Res 79(11):2798–2804

    Article  CAS  PubMed  Google Scholar 

  • Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, Lieb DJ, Chen JH, Frederick DT, Barzily-Rokni M, Freeman SS, Reuben A, Hoover PJ, Villani AC, Ivanova E, Portell A, Lizotte PH, Aref AR, Eliane JP, Hammond MR, Vitzthum H, Blackmon SM, Li B, Gopalakrishnan V, Reddy SM, Cooper ZA, Paweletz CP, Barbie DA, Stemmer-Rachamimov A, Flaherty KT, Wargo JA, Boland GM, Sullivan RJ, Getz G, Hacohen N (2018) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175(4):998–1013 e1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  • Schumacher TN, Scheper W, Kvistborg P (2019) Cancer neoantigens. Annu Rev Immunol 37:173–200

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61

    Article  CAS  PubMed  Google Scholar 

  • Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  Google Scholar 

  • Steuer CE, Ramalingam SS (2018) Tumor mutation burden: leading immunotherapy to the era of precision medicine? J Clin Oncol 36(7):631–632

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Takahama T, Sakai K, Shimizu S, Watanabe S, Kawakami H, Tanaka K, Sato C, Hayashi H, Nonagase Y, Yonesaka K, Takegawa N, Okuno T, Yoshida T, Fumita S, Suzuki S, Haratani K, Saigoh K, Ito A, Mitsudomi T, Handa H, Fukuoka K, Nakagawa K, Nishio K (2021) Clinical application of the FoundationOne CDx assay to therapeutic decision-making for patients with advanced solid tumors. Oncologist 26(4):e588–e596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam WL, Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19(11):1438–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tietze JK, Angelova D, Heppt MV, Reinholz M, Murphy WJ, Spannagl M, Ruzicka T, Berking C (2017) The proportion of circulating CD45RO(+)CD8(+) memory T cells is correlated with clinical response in melanoma patients treated with ipilimumab. Eur J Cancer 75:268–279

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Taube JM, Pardoll DM (2020) Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367(6477):eaax0182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walk EE, Yohe SL, Beckman A, Schade A, Zutter MM, Pfeifer J, Berry AB, C. College of American Pathologists Personalized Health Care (2020) The cancer immunotherapy biomarker testing landscape. Arch Pathol Lab Med 144(6):706–724

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhao Q, Wang YN, ** Y, He MM, Liu ZX, Xu RH (2019a) Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol 5(10):1504–1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT, Mirsoian A, Minnar CM, Stoffel KM, Sturgill IR, Grossenbacher SK, Withers SS, Rebhun RB, Hartigan-O’Connor DJ, Mendez-Lagares G, Tarantal AF, Isseroff RR, Griffith TS, Schalper KA, Merleev A, Saha A, Maverakis E, Kelly K, Aljumaily R, Ibrahimi S, Mukherjee S, Machiorlatti M, Vesely SK, Longo DL, Blazar BR, Canter RJ, Murphy WJ, Monjazeb AM (2019b) Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med 25(1):141–151

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Duan J, Cai S, Han M, Dong H, Zhao J, Zhu B, Wang S, Zhuo M, Sun J, Wang Q, Bai H, Han J, Tian Y, Lu J, Xu T, Zhao X, Wang G, Cao X, Li F, Wang D, Chen Y, Bai Y, Zhao J, Zhao Z, Zhang Y, **ong L, He J, Gao S, Wang J (2019c) Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol 5(5):696–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li F, Xu Y, Zheng X, Zhang C, Hu C, Xu Y, Mi W, Li X, Zhang Y (2021) Dissecting immune cell stat regulation network reveals biomarkers to predict ICB therapy responders in melanoma. J Transl Med 19(1):296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss GJ, Beck J, Braun DP, Bornemann-Kolatzki K, Barilla H, Cubello R, Quan W Jr, Sangal A, Khemka V, Waypa J, Mitchell WM, Urnovitz H, Schutz E (2017) Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy. Clin Cancer Res 23(17):5074–5081

    Article  CAS  PubMed  Google Scholar 

  • Wolf Y, Bartok O, Patkar S, Eli GB, Cohen S, Litchfield K, Levy R, Jimenez-Sanchez A, Trabish S, Lee JS, Karathia H, Barnea E, Day CP, Cinnamon E, Stein I, Solomon A, Bitton L, Perez-Guijarro E, Dubovik T, Shen-Orr SS, Miller ML, Merlino G, Levin Y, Pikarsky E, Eisenbach L, Admon A, Swanton C, Ruppin E, Samuels Y (2019) UVB-induced tumor heterogeneity diminishes immune response in melanoma. Cell 179(1):219–235 e221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Ju Q, Jia K, Yu J, Shi H, Wu H, Jiang M (2018) Correlation between sex and efficacy of immune checkpoint inhibitors (PD-1 and CTLA-4 inhibitors). Int J Cancer 143(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Yi M, Qin S, Chu Q, Zheng X, Wu K (2019) The efficacy and safety of combination of PD-1 and CTLA-4 inhibitors: a meta-analysis. Exp Hematol Oncol 8:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zeng D, Zhi S, Ye Z, Qiu W, Huang N, Sun L, Wang C, Wu Z, Bin J, Liao Y, Shi M, Liao W (2021) Single-cell analysis of a tumor-derived exosome signature correlates with prognosis and immunotherapy response. J Transl Med 19(1):381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ao Q, Nobre A, Pineiro P, Berciano-Guerrero MA, Alba E, Cobo M, Lauschke VM, Barragan I (2020) Genetic and epigenetic biomarkers of immune checkpoint blockade response. J Clin Med 9(1):286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, Wu K (2018a) Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 17(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi M, Qin S, Zhao W, Yu S, Chu Q, Wu K (2018b) The role of neoantigen in immune checkpoint blockade therapy. Exp Hematol Oncol 7:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi M, Dong B, Chu Q, Wu K (2019) Immune pressures drive the promoter hypermethylation of neoantigen genes. Exp Hematol Oncol 8:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Hong X, Song Z, Xu Y, Li C, Wang G, Zhang Y, Zhao X, Zhao Z, Zhao J, Huang M, Huang D, Qi C, Gao C, Cai S, Gu F, Hu Y, Xu C, Wang W, Lou Z, Zhang Y, Liu L (2020) Identification of deleterious NOTCH mutation as novel predictor to efficacious immunotherapy in NSCLC. Clin Cancer Res 26(14):3649–3661

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work is funded by Instituto de Salud Carlos III through the projects PI18_01592 and PI22_01816 (co-funded by the European Regional Development Fund/European Social Fund “A way to make Europe”/“Investing in your future”); Sociedad Española de Oncología Médica (SEOM); Sistema Andaluz de Salud, through the projects SA 0263/2017, Nicolás Monardes (to IB), PI-0121-2020, and RH-0090-2020; Consejería de Transformación económica, Industria, Conocimiento y Universidades through the projects CV20-62050, PY20_01326 and ProyExcel_01002; Spanish Group of Melanoma (Award for Best Research Project 2020); Fundación Bancaria Unicaja through the project C19048; and Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Garrido-Barros, M., Chaves, P., Barragán, I. (2023). Immune Checkpoint Blockade Response Biomarkers. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_160-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_160-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation