Biomarkers for Monitoring the Immunotherapy Response to Cancer

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology
  • 74 Accesses

Abstract

Numerous physiological samples are employed to find cancer biomarkers before the beginning of clinical signs. Different forms of cancer biomarkers may be retrieved from the tissue, blood, urine, or other body fluids, depending on the type of cancer. Over time and the discovery of new technology, numerous breakthroughs have been achieved in detecting these biomarkers. In addition to discovering biomarkers, new technologies have made it feasible to track these indicators throughout the therapy process following the completion of the treatment. Based on these results, the scientists concluded that when cancer starts, a specific and restricted number of biomarkers alter that, with the additional examination, lead to the discovery of specialized biomarkers for various forms of cancer. Specialists may utilize these capabilities to monitor cancer throughout the treatment and decide on some patient treatment plans. Immunotherapy is a treatment for several illnesses, including cancer, which promotes or inhibits the immune system response. Some interleukins, cytokines, and chemokines have been employed in this therapy. Immune system stimulation has been used to treat cancer and various immune system abnormalities. There are multiple approaches to treat cancer. Some of them improve the immune system in general. Others teach the immune system to target cancer cells selectively. Immunotherapy works better in certain forms of cancer than in others.

Given this, it appears that the potential of monitoring the response to immunotherapy treatment using biomarkers is a novel way in the area of personalized medicine, and we may anticipate current successes in this field in the not too distant future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aleebrahim-Dehkordi E, Molavi B, Mokhtari M, Deravi N, Fathi M, Fazel T, Mohebalizadeh M, Koochaki P, Shobeiri P, Hasanpour-Dehkordi A (2022) T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: from cytokines produced to immune responses. Transpl Immunol 70:101495

    Article  CAS  PubMed  Google Scholar 

  • Amatore F, Gorvel L, Olive D (2020) Role of inducible co-stimulator (ICOS) in cancer immunotherapy. Expert Opin Biol Ther 20:141–150

    Article  CAS  PubMed  Google Scholar 

  • Ameratunga M, Xu W, Lopez J (2020) Personalized cancer immunotherapy: today’s challenge and tomorrow’s promise. J Immunother Precis Oncol 1:56–67

    Article  Google Scholar 

  • Bethune MT, Joglekar AV (2017) Personalized T cell-mediated cancer immunotherapy: progress and challenges. Curr Opin Biotechnol 48:142–152

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, Holt RA (2014) Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 24:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro MP, Goldstein N (2015) Mismatch repair deficiency associated with complete remission to combination programmed cell death ligand immune therapy in a patient with sporadic urothelial carcinoma: immunotheranostic considerations. J Immunother Cancer 3:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, Khodadoust MS, Esfahani MS, Liu CL, Zhou L (2017) Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 7:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowell D, Krishna C, Pierini F, Makarov V, Rizvi NA, Kuo F, Morris LGT, Riaz N, Lenz TL, Chan TA (2019) Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat Med 25:1715–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crook KR, ** M, Weeks MF, Rampersad RR, Baldi RM, Glekas AS, Shen Y, Esserman DA, Little P, Schwartz TA, Liu P (2015) Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J Leukoc Biol 97:573–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Zhang J, Wu Q, Fang H, Shi C, Li Z, Lin C, Tang D, Wang D (2020) Intestinal microbiota: a new force in cancer immunotherapy. Cell Commun Signal 18:90–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW (2004) Autoreactive T cells in healthy individuals. J Immunol 172:5967–5972

    Article  CAS  PubMed  Google Scholar 

  • Davies JC, Wainwright CE, Canny GJ, Chilvers MA, Howenstine MS, Munck A, Mainz JG, Rodriguez S, Li H, Yen K, Ordoñez CL, Ahrens R (2013) Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med 187:1219–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dronca RS, Markovic S, Kottschade LA, Mcwilliams RR, Block MS, Nevala WK, Thompson MA, Dong H (2015) Bim as a predictive T-cell biomarker for response to anti-PD-1 therapy in metastatic melanoma (MM). Am Soc Clin Oncol 33:9013

    Article  Google Scholar 

  • Duan L, Mukherjee E (2016) Janeway’s immunobiology, ninth edition. Yale J Biol Med 89:424–425

    PubMed Central  Google Scholar 

  • Ebert LM, Macraild SE, Zanker D, Davis ID, Cebon J, Chen W (2012) A cancer vaccine induces expansion of NY-ESO-1-specific regulatory T cells in patients with advanced melanoma. PLoS One 7:e48424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eno J (2017) Immunotherapy through the years. J Adv Pract Oncol 8:747–753

    PubMed  PubMed Central  Google Scholar 

  • Frank K, Paust S (2020) Dynamic natural killer cell and T cell responses to influenza infection. Front Cell Infect Microbiol 10:425–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goossens N, Nakagawa S, Sun X, Hoshida Y (2015) Cancer biomarker discovery and validation. Transl Cancer Res 4:256–269

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33:570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves M, Cellimarchett G, van Zyl B, Tang D, Vilain RE, van der Westhuizen A, Bowden NA (2019) Monitoring patient response to pembrolizumab with peripheral blood exhaustion marker profiles. Front Med 6:113

    Article  Google Scholar 

  • Guillonneau C, Hill M, Hubert FX, Chiffoleau E, HervĂ© C, Li XL, Heslan M, Usal C, Tesson L, MĂ©noret S, Saoudi A, le Mauff B, Josien R, Cuturi MC, Anegon I (2007) CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest 117:1096–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6:140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornyák L, Dobos N, Koncz G, Karányi Z, Páll D, SzabĂł Z, Halmos G, SzĂ©kvölgyi L (2018) The role of Indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol 9:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24:1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John T, Black MA, Toro TT, Leader D, Gedye CA, Davis ID, Guilford PJ, Cebon JS (2008) Predicting clinical outcome through molecular profiling in stage III melanoma. Clin Cancer Res 14:5173–5180

    Article  CAS  PubMed  Google Scholar 

  • Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, Sica GL, Yu K, Koenig L, Patel NT, Behera M, WU H, Mccausland M, Chen Z, Zhang C, Khuri FR, Owonikoko TK, Ahmed R, Ramalingam SS (2017) Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A 114:4993–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucerova P, Cervinkova M (2016) Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment. Anti-Cancer Drugs 27:269–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahiri C, Pawar S, Mishra R (2019) Precision medicine and future of cancer treatment. Precis Cancer Med 2:33

    Article  Google Scholar 

  • Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, Wölfel C, Huber C, Wölfel T (2005) The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci U S A 102:16013–16018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Li T, Pignon JC, Wang B, Wang J, Shukla SA, Dou R, Chen Q, Hodi FS, Choueiri TK, Wu C, Hacohen N, Signoretti S, Liu JS, Liu XS (2016) Landscape of tumor-infiltrating T cell repertoire of human cancers. Nat Genet 48:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wu J (2018) History, applications, and challenges of immune repertoire research. Cell Biol Toxicol 34:441–457

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Chen G, Zhang C, Liao X, **e J, Liang T, Liao W, Song L, Zhang X (2022) Prognostic significance of tumor-infiltrating lymphocytes and macrophages in nasopharyngeal carcinoma: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 279:25–35

    Article  PubMed  Google Scholar 

  • Looney TJ, Duose DY, Lowman G, Linch E, Hajjar J, Topacio-Hall D, Xu M, Zheng J, Alshawa A, Tapia C, Stephen B, Wang L, Meric-Bernstam F, Miller L, Glavin A, Lin L, Gong J, Conroy J, Morrison C, Hyland F, Naing A (2018) Haplotype analysis of the TRB locus by TCRB repertoire sequencing. bioRxiv:406157

    Google Scholar 

  • Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932

    Article  CAS  PubMed  Google Scholar 

  • Maciejko L, Smalley M, Goldman A (2017) Cancer immunotherapy and personalized medicine: emerging technologies and biomarker-based approaches. J Mol Biomark Diagn 8:350

    Article  PubMed  PubMed Central  Google Scholar 

  • Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81:247–265

    Article  CAS  PubMed  Google Scholar 

  • Moon YW, Hajjar J, Hwu P, Naing A (2015) Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer 3:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore PS, Chang Y (2010) Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer 10:878–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal M, Singh S, Singh P, Chauhan P, Zaidi MA (2016) Tumor markers: a diagnostic tool. Natl J Maxillofac Surg 7:17–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Nimmagadda S (2020) Quantifying PD-L1 expression to monitor immune checkpoint therapy: opportunities and challenges. Cancers 12:3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimse SB, Sonawane MD, Song K-S, Kim T (2016) Biomarker detection technologies and future directions. Analyst 141:740–755

    Article  CAS  PubMed  Google Scholar 

  • Nixon AB, Schalper KA, Jacobs I, Potluri S, Wang IM, Fleener C (2019) Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential? J Immunother Cancer 7:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Noone A-M, Cronin KA, Altekruse SF, Howlader N, Lewis DR, Petkov VI, Penberthy L (2017) Cancer incidence and survival trends by subtype using data from the surveillance epidemiology and end results program, 1992–2013. Cancer Epidemiol Prev Biomarkers 26:632–641

    Article  Google Scholar 

  • Oelschlaeger TA (2010) Bacteria as tumor therapeutics? Bioeng Bugs 1:146–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostrand-Rosenberg S, Fenselau C (2018) Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol 200:422

    Article  CAS  PubMed  Google Scholar 

  • Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272:67–74

    Article  CAS  PubMed  Google Scholar 

  • Pink RC, Beaman E-M, Samuel P, Brooks SA, Carter DRF (2022) Utilising extracellular vesicles for early cancer diagnostics: benefits, challenges and recommendations for the future. Br J Cancer 126(3):323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reck M, Rodriguez-Abreu D, Robinson A, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S (2019) Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 37(7):537–546

    Article  CAS  PubMed  Google Scholar 

  • Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano A, Parrinello NL, Consoli ML, Marchionni L, Forte S, Conticello C, Pompa A, Corso A, Milone G, di Raimondo F, Borrello I (2015) Neutrophil to lymphocyte ratio (NLR) improves the risk assessment of ISS staging in newly diagnosed MM patients treated upfront with novel agents. Ann Hematol 94:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaros O, Fisler R (2005) Biomarker technology roundup: from discovery to clinical applications, a broad set of tools is required to translate from the lab to the clinic. BioTechniques 38:S30–S32

    Article  Google Scholar 

  • Scher HI, Graf RP, Schreiber NA, Jayaram A, Winquist E, Mclaughlin B, Lu D, Fleisher M, Orr S, Lowes L, Anderson A, Wang Y, Dittamore R, Allan AL, Attard G, Heller G (2018) Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol 4:1179–1186

    Article  PubMed  PubMed Central  Google Scholar 

  • Scolyer RA, Busam KJ (2019) 32 – prognosis, staging, and reporting of melanomas. In: Busam KJ, Gerami P, Scolyer RA (eds) Pathology of melanocytic tumors. Elsevier, Philadelphia

    Google Scholar 

  • Sharma A, Mishra M, Ram KR, Kumar R, Abdin MZ, Chowdhuri DK (2011) Transcriptome analysis provides insights for understanding the adverse effects of endosulfan in Drosophila melanogaster. Chemosphere 82:370–376

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Wolchok JD (2004) Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines. J Transl Med 2:12–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM (2013) Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity 38:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, Shimizu J, Sakaguchi S (1998) Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10:1969–1980

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27:109–118

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viale G, Trapani D, Curigliano G (2017) Mismatch repair deficiency as a predictive biomarker for immunotherapy efficacy. Biomed Res Int 2017:4719194

    Article  PubMed  PubMed Central  Google Scholar 

  • Viel S, Charrier E, Marçais A, Rouzaire P, Bienvenu J, Karlin L, Salles G, Walzer T (2013) Monitoring NK cell activity in patients with hematological malignancies. Onco Targets Ther 2:e26011

    Google Scholar 

  • Voutsadakis IA (2020) Prediction of immune checkpoint inhibitors benefit from routinely measurable peripheral blood parameters. Chin Clin Oncol 9:19

    Article  PubMed  Google Scholar 

  • Wang C, **ong C, Hsu Y-C, Wang X, Chen L (2020) Human leukocyte antigen (HLA) and cancer immunotherapy: HLA-dependent and -independent adoptive immunotherapies. Ann Blood 5(14):10–21037

    Google Scholar 

  • Wesolowski R, Markowitz J, Carson WE 3rd (2013) Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10

    Article  PubMed  PubMed Central  Google Scholar 

  • **a A, Zhang Y, Xu J, Yin T, Lu X-J (2019) T cell dysfunction in cancer immunity and immunotherapy. Front Immunol 10:1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Sakaguchi S (2006) Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 16:115–123

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liu Y (2020) Targeting NK cell checkpoint receptors or molecules for cancer immunotherapy. Front Immunol 11:1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X (2009) Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 182:3801

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dang F, Ren J, Wei W (2018) Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochem Sci 43:1014–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mohebalizadeh, M., Rezaei, N. (2023). Biomarkers for Monitoring the Immunotherapy Response to Cancer. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_131-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_131-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation