BiodentineTM Microstructure and Composition

  • Chapter
  • First Online:
Biodentine™

Abstract

Hydraulic calcium silicate cements have been developed to be used in moist clinical environments. When they react with water, their hydration results in the formation of calcium hydroxide which is necessary for a number of clinical uses. The first clinically available hydraulic calcium silicate cement—mineral trioxide aggregate—exhibited a number of shortcomings. Further materials have been developed aimed at addressing the shortcomings of the original formulation. Biodentine is a hydraulic calcium silicate cement, which has been optimized to exhibit an ordered microstructure and aiming at improved physical, chemical and biological properties.

Biodentine is primarily composed of laboratory-grade tricalcium silicate cement, includes zirconium oxide as radiopacifier and calcium carbonate, calcium chloride and a hydro-soluble polymer as reaction modifiers. It is classified as a Type 4 cement. Its specific composition leads to the high early calcium ion release, short setting time, low porosity, improved mechanical properties and improved material handling. This makes Biodentine ideal for clinical procedures involving the vital pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duncan HF, Galler KM, Tomson PL, Simon S, El-Karim I, et al. European Society of Endodontology position statement: management of deep caries and the exposed pulp. Int Endod J. 2019;52:923–34.

    Article  PubMed  Google Scholar 

  2. Aeinehchi M, Eslami B, Ghanbariha M, Saffar AS. Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-cap** agents in human teeth: a preliminary report. Int Endod J. 2003;36:225–31.

    Article  PubMed  Google Scholar 

  3. Nair PNR, Duncan HF, Pitt Ford TR, Luder HU. Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental cap** with mineral trioxide aggregate: a randomized controlled trial. Int Endod J. 2008;41:128–50.

    PubMed  Google Scholar 

  4. Cho SY, Seo DG, Lee SJ, Lee J, Lee SJ, Jung IY. Prognostic factors for clinical outcomes according to time after direct pulp cap**. J Endod. 2013;39:327–31.

    Article  PubMed  Google Scholar 

  5. Hilton TJ, Ferracane JL, Mancl L, Northwest Practice-Based Research Collaborative in Evidence-Based Dentistry (NWP). Comparison of CaOH with MTA for direct pulp cap**: a PBRN randomized clinical trial. J Dent Res. 2013;92:16S–22S.

    Article  PubMed  Google Scholar 

  6. Mente J, Hufnagel S, Leo M, et al. Treatment outcome of mineral trioxide aggregate or calcium hydroxide direct pulp cap**: long-term results. J Endod. 2014;40:1746–51.

    Article  PubMed  Google Scholar 

  7. Kundzina R, Stangvaltaite L, Eriksen HM, Kerosuo E. Cap** carious exposures in adults: a randomized controlled trial investigating mineral trioxide aggregate versus calcium hydroxide. Int Endod J. 2017;50:924–32.

    Article  PubMed  Google Scholar 

  8. Witte DR. The filling of a root canal with Portland cement. German quarterly for dentistry. J Cent Assoc German Dent. 1878;18:153–4.

    Google Scholar 

  9. Schlenker M. Fuellen der Wurzelkanaele mit Portland-Cement nach Dr Witte [Classification of clinically available hydraulic calcium silicate cements]. Deutsche Vrtljschr F Zahnh. 1880;20:277–83.

    Google Scholar 

  10. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod. 1993;19(11):541–4.

    Article  PubMed  Google Scholar 

  11. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993;19(12):591–5.

    Article  PubMed  Google Scholar 

  12. Torabinejad M, White JD. Tooth filling material and method of use. Patent number: 5415547, 1993.

    Google Scholar 

  13. Torabinejad M, White JD. Tooth filling material and method of use. Patent number: 5769638, 1995.

    Google Scholar 

  14. Camilleri J. Classification of hydraulic cements used in dentistry. Front Dent Med. 2020;1:9. https://doi.org/10.3389/fdmed.2020.00009.

    Article  Google Scholar 

  15. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Pitt Ford TR. The constitution of mineral trioxide aggregate. Dent Mater. 2005;21:297–303.

    Article  PubMed  Google Scholar 

  16. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater. 2013;29(5):580–93.

    Article  PubMed  Google Scholar 

  17. Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J. 2012;45(8):737–43.

    Article  PubMed  Google Scholar 

  18. Camilleri J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater. 2011;27(8):836–44.

    Article  PubMed  Google Scholar 

  19. Chang SW, Shon WJ, Lee W, Kum KY, Baek SH, Bae KS. Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(4):642–6.

    Article  PubMed  Google Scholar 

  20. Schembri M, Peplow G, Camilleri J. Analyses of heavy metals in mineral trioxide aggregate and Portland cement. J Endod. 2010;36(7):1210–5.

    Article  PubMed  Google Scholar 

  21. Monteiro Bramante C, Demarchi AC, de Moraes IG, Bernadineli N, Garcia RB, Spångberg LS, Duarte MA. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(6):909–13.

    Article  PubMed  Google Scholar 

  22. De-Deus G, de Souza MC, Sergio Fidel RA, Fidel SR, de Campos RC, Luna AS. Negligible expression of arsenic in some commercially available brands of Portland cement and mineral trioxide aggregate. J Endod. 2009;35(6):887–90.

    Article  PubMed  Google Scholar 

  23. Kum KY, Zhu Q, Safavi K, Gu Y, Bae KS, Chang SW. Analysis of six heavy metals in Ortho mineral trioxide aggregate and ProRoot mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry. Aust Endod J. 2013;39(3):126–30.

    Article  PubMed  Google Scholar 

  24. Duarte MA, De Oliveira Demarchi AC, Yamashita JC, Kuga MC, De Campos Fraga S. Arsenic release provided by MTA and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99(5):648–50.

    Article  PubMed  Google Scholar 

  25. Demirkaya K, Can Demirdöğen B, Öncel Torun Z, Erdem O, Çetinkaya S, Akay C. In vivo evaluation of the effects of hydraulic calcium silicate dental cements on plasma and liver aluminium levels in rats. Eur J Oral Sci. 2016;124(1):75–81.

    Article  PubMed  Google Scholar 

  26. Demirkaya K, Demirdöğen BC, Torun ZÖ, Erdem O, Çırak E, Tunca YM. Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements. Hum Exp Toxicol. 2017;36(10):1071–80. https://doi.org/10.1177/0960327116679713. Epub 2016 Nov 27.

    Article  PubMed  Google Scholar 

  27. Simsek N, Bulut ET, Ahmetoğlu F, Alan H. Determination of trace elements in rat organs implanted with endodontic repair materials by ICP-MS. J Mater Sci Mater Med. 2016;27(3):46.

    Article  PubMed  Google Scholar 

  28. Garcia LDFR, Huck C, Magalhães FAC, Souza PPC, Souza Costa CA. Systemic effect of mineral aggregate-based cements: histopathological analysis in rats. J Appl Oral Sci. 2017;25(6):620–30. https://doi.org/10.1590/1678-7757-2016-0634.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taylor HFW. Cement chemistry. London: Thomas Telford; 1997. p. 113–225.

    Book  Google Scholar 

  30. Odler I. Hydration, setting and hardening of Portland cement. In: Hewlett PC, editor. Lea’s chemistry of cement and concrete. London: Arnold; 1998. p. 241–84.

    Chapter  Google Scholar 

  31. Moir GK. Cements. In: Newman J, Choo BS, editors. Advanced concrete technology; constituent materials. Elsevier Butterworth Heinemann: Oxford; 2003. p. 3–45.

    Chapter  Google Scholar 

  32. Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007;40(6):462–70.

    Article  PubMed  Google Scholar 

  33. Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J. 2008;41(5):408–17.

    Article  PubMed  Google Scholar 

  34. Arias-Moliz MT, Farrugia C, Lung CYK, Schembri Wismayer P, Camilleri J. Antimicrobial and biological activity of leachate from light curable pulp cap** materials. J Dent. 2017;64:45–51.

    Article  PubMed  Google Scholar 

  35. Camilleri J, Laurent P, About I. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp cap** in entire tooth cultures. J Endod. 2014;40(11):1846–54.

    Article  PubMed  Google Scholar 

  36. Kaup M, Schäfer E, Dammaschke T. An in vitro study of different material properties of Biodentine™ compared to ProRoot MTA. Head Face Med. 2015;11:16.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater. 2013;29(2):e20–8.

    Article  PubMed  Google Scholar 

  38. Grech L, Mallia B, Camilleri J. Characterization of set intermediate restorative material, Biodentine, bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J. 2013;46(7):632–41.

    Article  PubMed  Google Scholar 

  39. Camilleri J, Grech L, Galea K, Keir D, Fenech M, Formosa L, Damidot D, Mallia B. Porosity and root dentine to material interface assessment of calcium silicate-based root-end filling materials. Clin Oral Investig. 2014;18(5):1437–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josette Camilleri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Camilleri, J. (2022). BiodentineTM Microstructure and Composition. In: About, I. (eds) Biodentine™. Springer, Cham. https://doi.org/10.1007/978-3-030-80932-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80932-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80931-7

  • Online ISBN: 978-3-030-80932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation