Artificial Intelligence of Things for Early Detection of Cardiac Diseases

  • Chapter
  • First Online:
Machine Learning for Critical Internet of Medical Things
  • 467 Accesses

Abstract

Cardiovascular disease (CVD) is now the primary cause for morbidity and mortality around the world; with the substantial improvements in prognosis and care, the rate can be reduced to a large extent. However, conventional ECG disorder detection models display substantial quotes of misdiagnosis because of the restrictions of the skills of extracted features. So strategies and techniques should be devised for alertness and care to keep away from the unexpected death of humans with coronary heart diseases. This chapter addresses the control of cardiovascular diseases with well-timed prognosis detection, remedy, and monitoring. It is determined that the wearable devices are more efficient for handling situations of cardiovascular diseases. The study proposes the Artificial Intelligence of Things (AIoT) for ECG and cardiac disorder recognition. In this chapter, we detailed cloud-based artificial intelligence framework for atrial fibrillation which are recently used and in brief defined the experimentation result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin, Y. J., Chuang, C. W., Yen, C. Y., Huang, S. H., Huang, P. W., Chen, J. Y., & Lee, S. Y. (2019). Artificial Intelligence of things wearable system for cardiac disease detection. In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) (pp. 67–70). IEEE.

    Chapter  Google Scholar 

  2. Tseng, C. H., Lin, C., Chang, H. C., Liu, C. C., Serafico, B. M. F., Wu, L. C., Lin, C. T., Hsu, T., Huang, C. Y., & Lo, M. T. (2019). Cloud-based artificial intelligence system for large-scale arrhythmia screening. Computer, 52(11), 40–51.

    Article  Google Scholar 

  3. El Khatib, M. M., & Ahmed, G. (2019). Management of Artificial Intelligence enabled smart wearable devices for early diagnosis and continuous monitoring of CVDS. International Journal of Innovative Technology and Exploring Engineering, 9(1).

    Google Scholar 

  4. Nasrabadi, A., & Haddadnia, J. (2016). Predicting heart attacks in patients using artificial intelligence methods. Modern Applied Science, 10(3), 66.

    Article  Google Scholar 

  5. Sharma, D., Sahu, S., & Pande, A. (2020). Mobile solution for early detection of heart diseases using artificial intelligence and novel digital stethoscope. International Journal of Engineering and Technology, 9(5).

    Google Scholar 

  6. Romiti, S., Vinciguerra, M., Saade, W., AnsoCortajarena, I., & Greco, E. (2020). Artificial intelligence (AI) and cardiovascular diseases: An unexpected Alliance. Cardiology Research and Practice.

    Google Scholar 

  7. Duverney, D., et al. (2002). High accuracy of automatic detection of atrial fibrillation using wavelet transform of heart rate intervals. Pacing and Clinical Electrophysiology, 25(4), 457–462.

    Article  Google Scholar 

  8. Petrėnas, A., Marozas, V., & Sörnmo, L. (Oct. 1, 2015). Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Computers in Biology and Medicine, 65, 184–191.

    Article  Google Scholar 

  9. Goldberger, A. L., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), E215–E220.

    Article  Google Scholar 

  10. Steinhubl, S. R., et al. (2018). Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: The mSToPS randomized clinical trial. JAMA, 320(2), 146–155.

    Article  Google Scholar 

  11. PMCC. (1997). Electrocardiogram (ECG) – what to expect. [Online]. Available: https://www.uhn.ca/PMCC/PatientsFamilies/Clinics_Tests/CG/Pages/what_expect.aspx 19. Mayo Clinic, “Electrocardiogram (ECG or EKG),” 2019. [Online].

  12. Ahmad, B. A., Khairatul, K., & Farnaza, A. (2017). An assessment of patient waiting and consultation time in a primary healthcare clinic. Malaysian Family Physician, 12(1), 14–21.

    Google Scholar 

  13. **a, H. N., Asif, I., & Zhao, X. P. (2013). Cloud-ECG for real time ECG monitoring and analysis. Computer Methods and Programs in Biomedicine, 110(3), 253–259.

    Article  Google Scholar 

  14. Wang, X. L., Gui, Q., Liu, B., **, Z., & Chen, Y. (2014). Enabling smart personalized healthcare: A hybrid mobile-cloud approach for ECG telemonitoring. IEEE Journal of Biomedical and Health Informatics, 18(3), 739–745.

    Article  Google Scholar 

  15. Yang, Z., Zhou, Q., Lei, L., Zheng, K., & **ang, W. (2016). An IoT-cloud based wearable ECG monitoring system for smart healthcare. Journal of Medical Systems, 40(12), 286.

    Article  Google Scholar 

  16. Satija, U., Ramkumar, B., & Manikandan, M. S. (2017). Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring. IEEE Internet of Things Journal, 4(3), 815–823.

    Article  Google Scholar 

  17. Clifford, G. D., Behar, J., Li, Q., & Rezek, I. (2012). Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiological Measurement, 33(9), 1419–1433.

    Article  Google Scholar 

  18. Hamilton, P. (2002). Open source ECG analysis. In Proc. Conf. Computers Cardiology, Memphis, TN,101–104

    Google Scholar 

  19. Lin, C., et al. (2019). Robust fetal heart beat detection via R-peak intervals distribution. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2019.2904014

  20. Desai, U., Martis, R. J., Acharya, U. R., Nayak, C. G., Seshikala, G., & Ranjan, S. K. (2016). Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. Journal of Mechanics in Medicine and Biology, 16(01).

    Google Scholar 

  21. Acharya, U. R., Fujita, H., Adam, M., Oh, S. L., Tan, J. H., Sudarshan, V. K., & Koh, J. E. W. (2016, October). Automated characterization of arrhythmias using nonlinear features from tachycardia ECG beats. IEEE International Conference on Systems, Man, and Cybernetics, 533–538.

    Google Scholar 

  22. Andreu-Perez, J., Leff, D. R., Ip, H. M., & Yang, G.-Z. (2015). —From wearable sensors to smart implants-–towards pervasive and personalized healthcare‖. IEEE Transactions on Biomedical Engineering, 62(12), 2750–2762.

    Article  Google Scholar 

  23. Oresko, J. J., **, Z., Cheng, J., Huang, S., Sun, Y., Duschl, H., & Cheng, A. C. (2010). A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. IEEE Transactions on Information Technology in Biomedicine, 14(3), 734–740.

    Article  Google Scholar 

  24. Alkeshuosh, A. H., Moghadam, M. Z., Al Mansoori, I., & Abdar, M. (2017, September). Using PSO algorithm for producing best rules in diagnosis of heart disease. In Proceedings of the International Conference on Computer Applications (ICCA) (pp. 306–311).

    Google Scholar 

  25. Al-milli, N. (2013). Backpropogation neural network for prediction of heart disease. Journal of Theoretical and Applied Information Technology, 56(1), 131–135.

    Google Scholar 

  26. Devi, C. A., Rajamhoana, S. P., Umamaheswari, K., Kiruba, R., Karunya, K., & Deepika, R. (2018, July). Analysis of neural networks based heart disease prediction system. In Proc. 11th Int. Conf. Hum. Syst. Interact. (HSI), Gdansk, Poland (pp. 233–239).

    Google Scholar 

  27. Abdullah, A. S., & Rajalaxmi, R. R. (2012, April). A data mining model for predicting the coronary heart disease using random forest classifier. In Proceedings of International Conference on Recent Trends Comput. Methods, Commun. Controls (pp. 22–25).

    Google Scholar 

  28. Anooj, P. K. (Jan. 2012). Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules. The Journal of King Saud University Computer and Information Sciences, 24(1), 27–40.

    Article  Google Scholar 

  29. Baccour, L. (June 2018). Amended fused TOPSIS-VIKOR for classification (ATOVIC) applied to some UCI data sets. Expert Systems with Applications, 99, 115–125.

    Article  Google Scholar 

  30. Cheng, C. A., & Chiu, H. W. (2017, July). An artificial neural network model for the evaluation of carotid artery stenting prognosis using a national-wide database. In Proceedings of the 39th Annual International Conference on IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2566–2569).

    Google Scholar 

  31. Esfahani, H. A., & Ghazanfari, M. (2017, December). Cardiovascular disease detection using a new ensemble classifier. In Proceedings of IEEE 4th International Conference on Knowledge Based Engineering and Innovation (KBEI) (pp. 1011–1014).

    Google Scholar 

  32. Dammak, F., Baccour, L., & Alimi, A. M. (2015, August). The impact of criterion weights techniques in TOPSIS method of multi-criteria decision making in crisp and intuitionistic fuzzy domains. Proceedings of IEEE International Conference on Fuzzy Syst. (FUZZ-IEEE), 9, 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, T., Kurian, A.N. (2022). Artificial Intelligence of Things for Early Detection of Cardiac Diseases. In: Al-Turjman, F., Nayyar, A. (eds) Machine Learning for Critical Internet of Medical Things. Springer, Cham. https://doi.org/10.1007/978-3-030-80928-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80928-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80927-0

  • Online ISBN: 978-3-030-80928-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation